
Probabilistic Neural Networks
Dissertation Defense

Evan Ott
November 28, 2022

Committee Members
Sinead Williamson, Supervisor

José Miguel Hernández-Lobato
James Scott

Mingyaun Zhou

Overview

Overview

Spike-and-Slab Probabilistic Backpropagation

Nonparametric Posterior Normalizing Flows

Edge-Based Generative Graph Neural Networks

Overview 2

Overview

Neural networks are highly flexible models
for complicated data relationships

Typically, parameters are estimated by MLE
(or minimizing a loss)

Typically used in deterministic settings

Inspired by Bayesian methodology, this work
explores ways of incorporating uncertainty
in neural network-based models

Overview 3

Overview

Explore methods of approximate Bayesian inference in neural
networks (Ott and Williamson, 2022b)

Approximate a Bayesian-inspired posterior in normalizing flow
models (Ott and Williamson, 2022a)

Construct a generative graph neural network model inspired by
results in Bayesian nonparametrics

Overview 4

Spike-and-Slab Probabilistic Backpropagation

This work will appear as a paper and poster, “Spike-and-Slab
Probabilistic Backpropagation: When Smarter Approximations
Make No Difference,” (Ott and Williamson, 2022b), at the I Can’t
Believe It’s Not Better workshop at NeurIPS 2022 (this Saturday)

SSPBP 5

Bayesian Neural Networks

Consider a feed-forward neural network with weights and biases
W = [{Wℓ}Lℓ=1, {bℓ}Lℓ=1]:

z0 = x

zℓ = σl (Wℓzℓ−1 + bℓ) ,

Consider a likelihood, e.g., p(y|W) = N(y|zL, γ−1)

Construct a prior p(W), typically Gaussian

Posterior p(W|Y) is intractable

SSPBP: Bayesian Neural Networks 6

Bayesian Neural Networks

MCMC methods are slow (Neal, 1995)

Laplace approximations are sensitive (MacKay, 1992)

Variational inference approaches require sampling (Graves, 2011;
Blundell et al., 2015)

Other work: p(W|Y)→ q(W) and “messages” q(zℓ) (e.g.,
Hernández-Lobato and Adams, 2015; Wu et al., 2018)

SSPBP: Bayesian Neural Networks 7

Probabilistic Backpropagation

In our work, we follow probabilistic backpropagation (PBP,
Hernández-Lobato and Adams, 2015)

Assume a mean-field Gaussian approximate posterior for q(W)

Gaussian messages q(zℓ) in linear and ReLU layers, using
moment-matching

SSPBP: Probabilistic Backpropagation 8

Probabilistic Backpropagation

PBP models messages with Gaussians

Consider z1 = ReLU(W1x+ b1), the “true” distribution for (z1)i
induced is (1− ρ)δ0 + ρTN(0,∞)(m, v)

Can we do better?
SSPBP: Probabilistic Backpropagation 9

Spike-and-Slab Approximation

We propose a spike-and-slab approximation for message
distributions (1− ρ)δ0 + ρN(m, v)

We derive optimal parameters by minimizing KL(p∥q), giving:

ρ = PX∼p[X ̸= 0], m =
1

ρ
EX∼p[X],

v =
1

ρ

(
VX∼p[X]− ρ(1− ρ)m2

)
.

Constructed drop-in replacements for PBP equations for linear and
ReLU layers

SSPBP: Method 10

Visual Comparison

Figure: Comparison of Gaussian and spike-and-slab approximations of the
0.5δ0 + 0.5TN0,∞(0, 1).

SSPBP: Method 11

Simulation Study

Consider samples of Z = ReLU(XW) = max(XW, 0):

pX pW % Saturated PBP SSPBP

N(0, 1) N(0, 1) 49.86% 0.066 0.020
N(1, 1) N(3, 1) 16.24% 0.031 0.015
N(1, 1) N(−3, 1) 84.44% 0.21 0.0038
N(3, 1) N(3, 1) 0.22% 0.0043 0.0051
N(3, 1) N(−3, 1) 99.72% 0.017 0.00024

Table: Simulation study of how well SSPBP approximates the true distribution,
reporting the MMD between a ground truth sample and approximations
obtained using either PBP or SSPBP.

SSPBP: Results 12

Method Comparison

2 Layers
10 Nodes

Dataset PBP SSPBP

Boston Housing 3.097±0.147 2.997±0.165
Combined Cycle Power Plant 4.088±0.067 4.096±0.066
Concrete Compression Strength 6.031±0.161 5.921±0.158
Energy Efficiency 1.477±0.043 1.660±0.112
Kin8nm 0.111±0.004 0.109±0.002
Naval Propulsion 0.006±0.000 0.006±0.000
Wine Quality Red 0.653±0.012 0.652±0.008
Yacht Hydrodynamics 1.064±0.072 1.131±0.063

Table: Mean and standard error of average test set RMSE of PBP and SSPBP,
on eight datasets.

SSPBP: Results 13

Method Equality

Intuition: the bias term forces the “true” distribution’s spike
probability to be 0

Proved: methods produce identical approximations following a
ReLU and linear layer

Considered a bias-free version of PBP and SSPBP to compare
approximations that are different

SSPBP: Results 14

Bias-Free Method Comparison

2 Layers
10 Nodes

Dataset PBP SSPBP

Boston Housing 3.809±0.295 3.865±0.322
Combined Cycle Power Plant 4.190±0.017 4.188±0.023
Concrete Compression Strength 6.823±0.214 6.668±0.237
Energy Efficiency 1.699±0.041 1.617±0.019
Kin8nm 0.126±0.001 0.125±0.001†

Naval Propulsion 0.005±0.000 0.006±0.000
Wine Quality Red 0.635±0.011 0.633±0.014
Yacht Hydrodynamics 3.898±0.245 4.276±0.390

Table: Mean and standard error of average test set RMSE for the bias-free
versions of PBP and SSPBP, on eight datasets.
† Due to numerical issues, the trials for this model were repeated with a
different random seed.

SSPBP: Results 15

I Can’t Believe It’s Not Better

Turns out, Gaussians are effective

Suspect spike-and-slab approximate posterior for q(W) may not
differ strongly from PBP with wide layers

Could explore alternative approximations for messages, e.g.,
collapsing near-zero values to the spike

SSPBP: Discussion and Future Work 16

Nonparametric Posterior Normalizing Flows

Some work presented here is currently under review as part of (Ott
and Williamson, 2022a) for AISTATS 2023.

NPL-NF 17

Normalizing Flows

Normalizing flows (Tabak and Turner, 2013) apply latent h and a
change-of-variables via invertible and differentiable “flow” gϕ:

U ∼ h x = gϕ(u)

pϕ(x) = h(g−1
ϕ (x))

∣∣∣∣∣det dg
−1
ϕ (X)

dX

∣∣∣∣∣
X=x

Can model complex high-dimensional distributions

NPL-NF: Normalizing Flows 18

Normalizing Flows

Trained by maximum likelihood, ignoring model uncertainty

As with Bayesian neural networks, intractable Bayesian posterior

Prior on flow parameters is not intuitive (true for BNNs as well)

Can we incorporate model uncertainty and a more intuitive prior?

NPL-NF: Normalizing Flows 19

Nonparametric Learning

Consider X ∼ F0 and parameter of interest θ0

Thought experiment: if we had access to x1:∞ or F0, how to
estimate θ0?

MLE totally appropriate

θ0(F0) = argmin
θ

∫
ℓ(x, θ)dF0(x)

Problem: only have x1:n, represent uncertainty about x(n+1):∞ or
F0

NPL-NF: Nonparametric Learning 20

Nonparametric Learning

Consider X ∼ F0 and parameter of interest θ0

Thought experiment: if we had access to x1:∞ or F0, how to
estimate θ0?

MLE totally appropriate

θ0(F0) = argmin
θ

∫
ℓ(x, θ)dF0(x)

Problem: only have x1:n, represent uncertainty about x(n+1):∞ or
F0

NPL-NF: Nonparametric Learning 21

Nonparametric Learning

Nonparametric learning (Lyddon et al., 2018; Fong et al., 2019) is
an Bayesian-inspired approach to inference

Key idea: express our uncertainty about F0 and construct F0|x1:n,
then

π̃(θ|x1:n) =
∫
π(θ|F0)dπ(F0|x1:n)

Can sample this “nonparametric posterior” via MC

NPL-NF: Nonparametric Learning 22

Nonparametric Learning

We’ll use F0 ∼ DP(α, Fπ), following Fong et al. (2019), with

F0|x1:n ∼ DP

(
α+ n,

1

α+ n

(∑
i

δxi + αFπ

))

Can obtain bootstrap samples of π̃(θ|x1:n)

NPL-NF: Nonparametric Learning 23

Nonparametric Learning

Algorithm NPL posterior sampling (Fong et al., 2019)

Require: Observations x1:n, number of samples B, base measure Fπ,
concentration parameter α
for b = 1, . . . , B do
F (b) =

∑∞
i=1 wiδψi

∼ DP
(
α+ n,

∑
i δxi

+αFπ

α+n

)
θ(b) = argminθ

∑∞
i=1 wiℓ(ψi, θ)

end for
return {θ(b)}Bb=1

NPL-NF: Nonparametric Learning 24

Our Method

Naïve NPL approach: learn B independent NFs (expensive)

Idea: reparameterize NFs with latent θ and shared ϕ

U ∼ hθ = N(µ, I) x = gϕ(u)

Learn ϕ globally, θ is analytically tractable to optimize

NPL-NF: Method 25

Simulations for GMM

Figure: Samples (blue) from MAF model trained on N = 100 data points
(black), in the original MAF model, and in the posterior normalizing flow
version with α ∈ {0, 1, 100} and two spherical Gaussian priors centered at
(0, 0)⊤.

NPL-NF: Results 26

Empirical Results

Figure: Results on datasets, with covariate dimension increasing, comparing
priors.
NPL-NF: Results 27

Comparison with Naïve NPL Approach

Method Average Test LL

Maximum Likelihood, µ = 0 −28.441± 0.405
Naïve WLB, µ = 0 −31.975± 0.453
Ours, WLB, θ = µ −25.234± 0.438
Ours, NPL α = 100 (Gaussian), θ = µ −23.671± 0.327
Ours, NPL α = 100 (Empirical), θ = µ −22.188± 0.278

Table: Comparison of standard NPL approach to our version on the
MiniBooNE dataset (N = 1000).

NPL-NF: Results 28

Discussion and Future Work

Choice of flow architecture is important – explored as joint work in
Ott and Williamson (2022a)

Explored simple and best-case priors, can explore historical data or
transfer learning approaches

NPL-NF: Discussion and Future Work 29

Edge-Based Generative Graph Neural Networks

This represents my contributions to a larger collaboration with
Curtis Carter, Elahe Ghalebi, and Sinead Williamson.

eGGNN 30

Graph Neural Networks

Graph neural networks (GNNs, Scarselli et al., 2008) create “node
embeddings” hv for graph G = (V,E) by message passing

mv =
∑

(u,v)∈E

fmessage(xv, xu, x(u,v), hu)

h′v = fupdate(hv,mv)

eGGNN: Generative Graph Neural Networks 31

Generative GNNs

GNNs great for node or graph classification

Generative GNN models construct a distribution on graphs (e.g.,
DeepGMG, Li et al., 2018)

Example: DeepGMG constructs G node-by-node

Add new node based on graph embedding; add edges based on
node embeddings

Generally, not focused on graph properties

eGGNN: Generative Graph Neural Networks 32

Generative GNNs

Sparsity is an important property of graphs:

sparsity(G) = 1− density(G) = 1− 2|E|
|V |(|V | − 1)

Real-world graphs are often sparse, e.g., social networks

Many generative GNN models are graphon-like, which produce
dense graphs (Orbanz and Roy, 2014)

eGGNN: Generative Graph Neural Networks 33

Edge-Based Graph Models

Certain edge-based methods can produce sparse graphs (Crane and
Dempsey, 2016; Cai et al., 2016)

Consider “binary Hollywood process” (BHP, Crane and Dempsey,
2016), with new edge en+1 = (s, r) for graph Gn = (Vn, En):

p(S = v) ∝

{
degree(v)− σ v ∈ Vn,
α+ σ|Vn| v = |Vn|+ 1,

p(R = v|S = s) ∝

degree(v)− σ v ∈ Vn,
1− σ v = s = |Vn|+ 1,

α+ σ|Vn ∪ {s}| v = |Vn ∪ {s}|+ 1

eGGNN: Edge-Based Graph Models 34

Edge-Based Graph Models

p(S = v) ∝

{
degree(v)− σ v ∈ Vn,
α+ σ|Vn| v = |Vn|+ 1,

p(R = v|S = s) ∝

degree(v)− σ v ∈ Vn,
1− σ v = s = |Vn|+ 1,

α+ σ|Vn ∪ {s}| v = |Vn ∪ {s}|+ 1

eGGNN: Edge-Based Graph Models 35

Edge-Based Generative GNN

Select new edge en+1 = (s, r) for Gn = (Vn, En)

p(S = v) ∝

{
fsender(hv; θ) v ∈ Vn,
fnew sender(hG; θ) v = |Vn|+ 1,

p(R = v|S = s) ∝

{
frecipient(hv, hs; θ) v ∈ Vn ∪ {s},
fnew recipient(hG, hs; θ) v = |Vn ∪ {s}|+ 1

Add edge to graph and update embeddings, optionally weighting
messages by time

eGGNN: Method 36

Comparison on BHP Graphs

Figure: Top, a BHP graph from the test set. Left, ground truth sender
probabilities under the BHP model. Right, Predicted sender probabilities within
our model.
eGGNN: Results 37

Sparsity for BHP Graphs

Figure: Expected and empirical node growth for binary Hollywood process
graph sequences and generated graph sequences.

eGGNN: Results 38

Visual Comparison on Synthetic Graphs

Figure: Graphs generated from DeepGMG and our model for synthetic graph
datasets.

eGGNN: Results 39

Quantitative Comparison on Synthetic Graphs

Dataset + Metric Ours (time) Ours (no time) DeepGMG

BA n = 4 n = 6 n = 4
MMDdegree 0.35268 ± 0.00943 0.38978 ± 0.01611 0.22016 ± 0.01586
MMDcluster 0.10822 ± 0.00065 0.11020 ± 0.00117 0.14204 ± 0.00011
MMDspectral 0.19653 ± 0.00923 0.23202 ± 0.01701 0.21706 ± 0.00332
KSdensity 0.54475 ± 0.02572 0.67117 ± 0.02720 0.89250 ± 0.02161

Cycles n = 4 n = 6 n = 5
MMDdegree 0.08389 ± 0.00018 0.08350 ± 0.00025 0.12930 ± 0.01692
MMDcluster 0.00000 ± 0.00000 0.00531 ± 0.00232 0.18182 ± 0.06401
MMDspectral 0.14965 ± 0.00069 0.14872 ± 0.00146 0.29722 ± 0.00620
KSdensity 0.09850 ± 0.00043 0.09983 ± 0.00146 0.81000 ± 0.04195

DNND n = 4 n = 5 n = 4
MMDdegree 0.37253 ± 0.00360 0.33253 ± 0.01476 0.09297 ± 0.00482
MMDcluster 0.39874 ± 0.00749 0.39486 ± 0.00724 0.50634 ± 0.01349
MMDspectral 0.25171 ± 0.00781 0.22512 ± 0.01368 0.17333 ± 0.00211
KSdensity 0.50975 ± 0.04510 0.41720 ± 0.03059 0.99250 ± 0.00217

Ladders n = 4 n = 6 n = 5
MMDdegree 0.00397 ± 0.00043 0.00375 ± 0.00013 0.10733 ± 0.00009
MMDcluster 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00143 ± 0.00128
MMDspectral 0.05223 ± 0.00027 0.05133 ± 0.00030 0.50509 ± 0.00086
KSdensity 0.08125 ± 0.00134 0.08033 ± 0.00122 0.96000 ± 0.00000

Table: Synthetic dataset results, showing the mean and standard error of each
metric on four trials unless otherwise noted.
eGGNN: Results 40

Quantitative Comparison on Real Graphs
Dataset + Metric Ours (time) Ours (no time) DeepGMG

DBLP n = 4 n = 6 n = 4
MMDdegree 0.38128 ± 0.00871 0.41075 ± 0.00616 0.06716 ± 0.00766
MMDcluster 0.23977 ± 0.00006 0.23971 ± 0.00001 0.26312 ± 0.01346
MMDspectral 0.43224 ± 0.00550 0.43172 ± 0.00813 0.15566 ± 0.00464
KSdensity 0.96535 ± 0.01185 0.96659 ± 0.00614 0.47656 ± 0.07952

Highschool n = 4 n = 4 n = 3
MMDdegree 0.31491 ± 0.00859 0.39204 ± 0.01191 0.19257 ± 0.01318
MMDcluster 0.21266 ± 0.00165 0.21684 ± 0.00106 0.21780 ± 0.00306
MMDspectral 0.25285 ± 0.01048 0.34389 ± 0.01671 0.29707 ± 0.02010
KSdensity 0.84394 ± 0.01469 0.76664 ± 0.06818 0.23444 ± 0.04132

MIT n = 0 n = 2 n = 2
MMDdegree – 0.64142 ± 0.01921 0.09543 ± 0.00096
MMDcluster – 0.80641 ± 0.00130 0.63332 ± 0.00997
MMDspectral – 0.47489 ± 0.04091 0.09277 ± 0.00473
KSdensity – 0.82450 ± 0.08733 0.86000 ± 0.02121

Tumblr n = 4 n = 5 n = 2
MMDdegree 0.21777 ± 0.03324 0.33572 ± 0.01402 0.06708 ± 0.00416
MMDcluster 0.54088 ± 0.01591 0.57516 ± 0.00149 0.35256 ± 0.01699
MMDspectral 0.18212 ± 0.02233 0.27061 ± 0.01587 0.14842 ± 0.00133
KSdensity 0.74173 ± 0.05625 0.86281 ± 0.02615 0.98324 ± 0.01185

Table: Real-world dataset results, showing the mean and standard error of each
metric on four trials unless otherwise noted.

eGGNN: Results 41

Discussion and Future Work

Works well on smaller synthetic graphs

Suspect that real-world graph performance was hindered by
over-smoothing of node embeddings

Reducing number of messages (e.g., window)

eGGNN: Discussion and Future Work 42

Concluding Remarks

Explored incorporating stochasticity in neural networks

Proposed spike-and-slab approximation for PBP

Applied novel inference method to normalizing flows

Created generative GNN capable of producing sparse graphs

43

Thanks

Questions?

44

References I

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. arXiv preprint arXiv:1505.05424, 2015.

Diana Cai, Trevor Campbell, and Tamara Broderick. Edge-exchangeable graphs and sparsity. Advances
in Neural Information Processing Systems, 29, 2016.

Harry Crane and Walter Dempsey. Edge exchangeable models for network data. arXiv preprint
arXiv:1603.04571, 2016.

Edwin Fong, Simon Lyddon, and Chris Holmes. Scalable nonparametric sampling from multimodal
posteriors with the posterior bootstrap. In International Conference on Machine Learning, pages
1952–1962. PMLR, 2019.

Alex Graves. Practical variational inference for neural networks. In Advances in Neural Information
Processing Systems, pages 2348–2356, 2011.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning of
Bayesian neural networks. In International Conference on Machine Learning, pages 1861–1869, 2015.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018.

Simon Lyddon, Stephen Walker, and Chris C Holmes. Nonparametric learning from Bayesian models
with randomized objective functions. In Advances in Neural Information Processing Systems, 2018.

David JC MacKay. Bayesian interpolation. Neural computation, 4(3):415–447, 1992.

Radford M Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto, 1995.

Peter Orbanz and Daniel M Roy. Bayesian models of graphs, arrays and other exchangeable random
structures. IEEE transactions on pattern analysis and machine intelligence, 37(2):437–461, 2014.

Evan Ott and Sinead Williamson. Nonparametric Posterior Normalizing Flows. submitted, 2022a.

Evan Ott and Sinead Williamson. Spike-and-Slab Probabilistic Backpropagation: When Smarter
Approximations Make No Difference. In I Can’t Believe It’s Not Better Workshop: Understanding
Deep Learning Through Empirical Falsification, 2022b. URL
https://openreview.net/forum?id=iYAdBHSA_Pt.References

https://openreview.net/forum?id=iYAdBHSA_Pt

References II

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Esteban G Tabak and Cristina V Turner. A family of nonparametric density estimation algorithms.
Communications on Pure and Applied Mathematics, 66(2):145–164, 2013.

Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E Turner, Jose Miguel Hernandez-Lobato, and
Alexander L Gaunt. Deterministic variational inference for robust bayesian neural networks. arXiv
preprint arXiv:1810.03958, 2018.

References

Coupling NF Layers

Transformations can include non-invertible functions fϕ, e.g.,

x1:m = u1:m

x(m+1):2m = u(m+1):2m + fϕ(u1:m)

Normalizing Flows 47

Posterior Bootstrap Sampling

Algorithm Posterior bootstrap sampling (Fong et al., 2019)
Require: Observations y1, . . . , yn, base measure Fπ, number of samples
B, concentration parameter α
for b = 1, . . . , B do

Sample m pseudo-observations y∗1:m ∼ Fπ
Sample weights W := (w1:n, w

∗
1:m) ∼ Dir

(
1, · · · , 1, αm , · · · ,

α
m

)
F (b) =

∑n
i=1 wiδyi +

∑m
i=1 w

∗
i δy∗i

θ(b) = argminθ
∑n
i=1 wiℓ(yi, θ) +

∑m
i=1 w

∗
i ℓ(y

∗
i , θ)

end for
return {θ(b)}Bb=1

Nonparametric Learning 48

Posterior Bootstrap with Shared Parameters

Algorithm Posterior Bootstrap with Shared Parameters
Require: Observations y1, . . . , yn, base measure Fπ, initial shared param-

eter value ϕ0, number of samples B, concentration parameter α, learning
rate τ
ϕ← ϕ0
while not converged do

Sample m pseudo-observations y∗1:m ∼ Fπ
Sample weights W := (w1:n, w

∗
1:m) ∼ Dir

(
1, · · · , 1, αm , · · · ,

α
m

)
F̃ =

∑n
i=1 wiδyi +

∑m
i=1 w

∗
i δy∗i

θ = argminθ
∫
ℓ(y, ϕ, θ)dF̃ (y)

ϕ← ϕ+ τ∇ (
∑n
i=1 wiℓ(yi, ϕ, θ) +

∑m
i=1 w

∗
i ℓ(y

∗
i , ϕ, θ))

end while
ϕ̂← ϕ

Nonparametric Learning 49

	Overview
	Spike-and-Slab Probabilistic Backpropagation
	Bayesian Neural Networks
	Probabilistic Backpropagation
	Method
	Results
	Discussion and Future Work

	Nonparametric Posterior Normalizing Flows
	Normalizing Flows
	Nonparametric Learning
	Method
	Results
	Discussion and Future Work

	Edge-Based Generative Graph Neural Networks
	Generative Graph Neural Networks
	Edge-Based Graph Models
	Method
	Results
	Discussion and Future Work

	
	
	

	Appendix
	References
	

	References
	Normalizing Flows
	Nonparametric Learning

