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Overview

Neural networks are highly flexible models
for complicated data relationships

Typically, parameters are estimated by MLE
(or minimizing a loss)

Typically used in deterministic settings

Inspired by Bayesian methodology, this work
explores ways of incorporating uncertainty
in neural network-based models
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Overview

Explore methods of approximate Bayesian inference in neural
networks (Ott and Williamson, 2022b)

Approximate a Bayesian-inspired posterior in normalizing flow
models (Ott and Williamson, 2022a)

Construct a generative graph neural network model inspired by
results in Bayesian nonparametrics
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Spike-and-Slab Probabilistic Backpropagation

This work will appear as a paper and poster, “Spike-and-Slab
Probabilistic Backpropagation: When Smarter Approximations
Make No Difference,” (Ott and Williamson, 2022b), at the I Can’t
Believe It’s Not Better workshop at NeurIPS 2022 (this Saturday)
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Bayesian Neural Networks

Consider a feed-forward neural network with weights and biases
W = [{Wℓ}Lℓ=1, {bℓ}Lℓ=1]:

z0 = x

zℓ = σl (Wℓzℓ−1 + bℓ) ,

Consider a likelihood, e.g., p(y|W) = N(y|zL, γ−1)

Construct a prior p(W), typically Gaussian

Posterior p(W|Y ) is intractable
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Bayesian Neural Networks

MCMC methods are slow (Neal, 1995)

Laplace approximations are sensitive (MacKay, 1992)

Variational inference approaches require sampling (Graves, 2011;
Blundell et al., 2015)

Other work: p(W|Y )→ q(W) and “messages” q(zℓ) (e.g.,
Hernández-Lobato and Adams, 2015; Wu et al., 2018)
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Probabilistic Backpropagation

In our work, we follow probabilistic backpropagation (PBP,
Hernández-Lobato and Adams, 2015)

Assume a mean-field Gaussian approximate posterior for q(W)

Gaussian messages q(zℓ) in linear and ReLU layers, using
moment-matching
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Probabilistic Backpropagation

PBP models messages with Gaussians

Consider z1 = ReLU(W1x+ b1), the “true” distribution for (z1)i
induced is (1− ρ)δ0 + ρTN(0,∞)(m, v)

Can we do better?
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Spike-and-Slab Approximation

We propose a spike-and-slab approximation for message
distributions (1− ρ)δ0 + ρN(m, v)

We derive optimal parameters by minimizing KL(p∥q), giving:

ρ = PX∼p[X ̸= 0], m =
1

ρ
EX∼p[X],

v =
1

ρ

(
VX∼p[X]− ρ(1− ρ)m2

)
.

Constructed drop-in replacements for PBP equations for linear and
ReLU layers
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Visual Comparison

Figure: Comparison of Gaussian and spike-and-slab approximations of the
0.5δ0 + 0.5TN0,∞(0, 1).
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Simulation Study

Consider samples of Z = ReLU(XW ) = max(XW, 0):

pX pW % Saturated PBP SSPBP

N(0, 1) N(0, 1) 49.86% 0.066 0.020
N(1, 1) N(3, 1) 16.24% 0.031 0.015
N(1, 1) N(−3, 1) 84.44% 0.21 0.0038
N(3, 1) N(3, 1) 0.22% 0.0043 0.0051
N(3, 1) N(−3, 1) 99.72% 0.017 0.00024

Table: Simulation study of how well SSPBP approximates the true distribution,
reporting the MMD between a ground truth sample and approximations
obtained using either PBP or SSPBP.
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Method Comparison

2 Layers
10 Nodes

Dataset PBP SSPBP

Boston Housing 3.097±0.147 2.997±0.165
Combined Cycle Power Plant 4.088±0.067 4.096±0.066
Concrete Compression Strength 6.031±0.161 5.921±0.158
Energy Efficiency 1.477±0.043 1.660±0.112
Kin8nm 0.111±0.004 0.109±0.002
Naval Propulsion 0.006±0.000 0.006±0.000
Wine Quality Red 0.653±0.012 0.652±0.008
Yacht Hydrodynamics 1.064±0.072 1.131±0.063

Table: Mean and standard error of average test set RMSE of PBP and SSPBP,
on eight datasets.
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Method Equality

Intuition: the bias term forces the “true” distribution’s spike
probability to be 0

Proved: methods produce identical approximations following a
ReLU and linear layer

Considered a bias-free version of PBP and SSPBP to compare
approximations that are different
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Bias-Free Method Comparison

2 Layers
10 Nodes

Dataset PBP SSPBP

Boston Housing 3.809±0.295 3.865±0.322
Combined Cycle Power Plant 4.190±0.017 4.188±0.023
Concrete Compression Strength 6.823±0.214 6.668±0.237
Energy Efficiency 1.699±0.041 1.617±0.019
Kin8nm 0.126±0.001 0.125±0.001†

Naval Propulsion 0.005±0.000 0.006±0.000
Wine Quality Red 0.635±0.011 0.633±0.014
Yacht Hydrodynamics 3.898±0.245 4.276±0.390

Table: Mean and standard error of average test set RMSE for the bias-free
versions of PBP and SSPBP, on eight datasets.
† Due to numerical issues, the trials for this model were repeated with a
different random seed.

SSPBP: Results 15



I Can’t Believe It’s Not Better

Turns out, Gaussians are effective

Suspect spike-and-slab approximate posterior for q(W) may not
differ strongly from PBP with wide layers

Could explore alternative approximations for messages, e.g.,
collapsing near-zero values to the spike
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Nonparametric Posterior Normalizing Flows

Some work presented here is currently under review as part of (Ott
and Williamson, 2022a) for AISTATS 2023.
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Normalizing Flows

Normalizing flows (Tabak and Turner, 2013) apply latent h and a
change-of-variables via invertible and differentiable “flow” gϕ:

U ∼ h x = gϕ(u)

pϕ(x) = h(g−1
ϕ (x))

∣∣∣∣∣det dg
−1
ϕ (X)

dX

∣∣∣∣∣
X=x

Can model complex high-dimensional distributions
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Normalizing Flows

Trained by maximum likelihood, ignoring model uncertainty

As with Bayesian neural networks, intractable Bayesian posterior

Prior on flow parameters is not intuitive (true for BNNs as well)

Can we incorporate model uncertainty and a more intuitive prior?
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Nonparametric Learning

Consider X ∼ F0 and parameter of interest θ0

Thought experiment: if we had access to x1:∞ or F0, how to
estimate θ0?

MLE totally appropriate

θ0(F0) = argmin
θ

∫
ℓ(x, θ)dF0(x)

Problem: only have x1:n, represent uncertainty about x(n+1):∞ or
F0

NPL-NF: Nonparametric Learning 20
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Nonparametric Learning

Nonparametric learning (Lyddon et al., 2018; Fong et al., 2019) is
an Bayesian-inspired approach to inference

Key idea: express our uncertainty about F0 and construct F0|x1:n,
then

π̃(θ|x1:n) =
∫
π(θ|F0)dπ(F0|x1:n)

Can sample this “nonparametric posterior” via MC
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Nonparametric Learning

We’ll use F0 ∼ DP(α, Fπ), following Fong et al. (2019), with

F0|x1:n ∼ DP

(
α+ n,

1

α+ n

(∑
i

δxi + αFπ

))

Can obtain bootstrap samples of π̃(θ|x1:n)
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Nonparametric Learning

Algorithm NPL posterior sampling (Fong et al., 2019)

Require: Observations x1:n, number of samples B, base measure Fπ,
concentration parameter α
for b = 1, . . . , B do
F (b) =

∑∞
i=1 wiδψi

∼ DP
(
α+ n,

∑
i δxi

+αFπ

α+n

)
θ(b) = argminθ

∑∞
i=1 wiℓ(ψi, θ)

end for
return {θ(b)}Bb=1
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Our Method

Naïve NPL approach: learn B independent NFs (expensive)

Idea: reparameterize NFs with latent θ and shared ϕ

U ∼ hθ = N(µ, I) x = gϕ(u)

Learn ϕ globally, θ is analytically tractable to optimize

NPL-NF: Method 25



Simulations for GMM

Figure: Samples (blue) from MAF model trained on N = 100 data points
(black), in the original MAF model, and in the posterior normalizing flow
version with α ∈ {0, 1, 100} and two spherical Gaussian priors centered at
(0, 0)⊤.
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Empirical Results

Figure: Results on datasets, with covariate dimension increasing, comparing
priors.
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Comparison with Naïve NPL Approach

Method Average Test LL

Maximum Likelihood, µ = 0 −28.441± 0.405
Naïve WLB, µ = 0 −31.975± 0.453
Ours, WLB, θ = µ −25.234± 0.438
Ours, NPL α = 100 (Gaussian), θ = µ −23.671± 0.327
Ours, NPL α = 100 (Empirical), θ = µ −22.188± 0.278

Table: Comparison of standard NPL approach to our version on the
MiniBooNE dataset (N = 1000).
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Discussion and Future Work

Choice of flow architecture is important – explored as joint work in
Ott and Williamson (2022a)

Explored simple and best-case priors, can explore historical data or
transfer learning approaches
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Edge-Based Generative Graph Neural Networks

This represents my contributions to a larger collaboration with
Curtis Carter, Elahe Ghalebi, and Sinead Williamson.
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Graph Neural Networks

Graph neural networks (GNNs, Scarselli et al., 2008) create “node
embeddings” hv for graph G = (V,E) by message passing

mv =
∑

(u,v)∈E

fmessage(xv, xu, x(u,v), hu)

h′v = fupdate(hv,mv)

eGGNN: Generative Graph Neural Networks 31



Generative GNNs

GNNs great for node or graph classification

Generative GNN models construct a distribution on graphs (e.g.,
DeepGMG, Li et al., 2018)

Example: DeepGMG constructs G node-by-node

Add new node based on graph embedding; add edges based on
node embeddings

Generally, not focused on graph properties
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Generative GNNs

Sparsity is an important property of graphs:

sparsity(G) = 1− density(G) = 1− 2|E|
|V |(|V | − 1)

Real-world graphs are often sparse, e.g., social networks

Many generative GNN models are graphon-like, which produce
dense graphs (Orbanz and Roy, 2014)
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Edge-Based Graph Models

Certain edge-based methods can produce sparse graphs (Crane and
Dempsey, 2016; Cai et al., 2016)

Consider “binary Hollywood process” (BHP, Crane and Dempsey,
2016), with new edge en+1 = (s, r) for graph Gn = (Vn, En):

p(S = v) ∝

{
degree(v)− σ v ∈ Vn,
α+ σ|Vn| v = |Vn|+ 1,

p(R = v|S = s) ∝


degree(v)− σ v ∈ Vn,
1− σ v = s = |Vn|+ 1,

α+ σ|Vn ∪ {s}| v = |Vn ∪ {s}|+ 1
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Edge-Based Graph Models
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Edge-Based Generative GNN

Select new edge en+1 = (s, r) for Gn = (Vn, En)

p(S = v) ∝

{
fsender(hv; θ) v ∈ Vn,
fnew sender(hG; θ) v = |Vn|+ 1,

p(R = v|S = s) ∝

{
frecipient(hv, hs; θ) v ∈ Vn ∪ {s},
fnew recipient(hG, hs; θ) v = |Vn ∪ {s}|+ 1

Add edge to graph and update embeddings, optionally weighting
messages by time
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Comparison on BHP Graphs

Figure: Top, a BHP graph from the test set. Left, ground truth sender
probabilities under the BHP model. Right, Predicted sender probabilities within
our model.
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Sparsity for BHP Graphs

Figure: Expected and empirical node growth for binary Hollywood process
graph sequences and generated graph sequences.
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Visual Comparison on Synthetic Graphs

Figure: Graphs generated from DeepGMG and our model for synthetic graph
datasets.
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Quantitative Comparison on Synthetic Graphs

Dataset + Metric Ours (time) Ours (no time) DeepGMG

BA n = 4 n = 6 n = 4
MMDdegree 0.35268 ± 0.00943 0.38978 ± 0.01611 0.22016 ± 0.01586
MMDcluster 0.10822 ± 0.00065 0.11020 ± 0.00117 0.14204 ± 0.00011
MMDspectral 0.19653 ± 0.00923 0.23202 ± 0.01701 0.21706 ± 0.00332
KSdensity 0.54475 ± 0.02572 0.67117 ± 0.02720 0.89250 ± 0.02161

Cycles n = 4 n = 6 n = 5
MMDdegree 0.08389 ± 0.00018 0.08350 ± 0.00025 0.12930 ± 0.01692
MMDcluster 0.00000 ± 0.00000 0.00531 ± 0.00232 0.18182 ± 0.06401
MMDspectral 0.14965 ± 0.00069 0.14872 ± 0.00146 0.29722 ± 0.00620
KSdensity 0.09850 ± 0.00043 0.09983 ± 0.00146 0.81000 ± 0.04195

DNND n = 4 n = 5 n = 4
MMDdegree 0.37253 ± 0.00360 0.33253 ± 0.01476 0.09297 ± 0.00482
MMDcluster 0.39874 ± 0.00749 0.39486 ± 0.00724 0.50634 ± 0.01349
MMDspectral 0.25171 ± 0.00781 0.22512 ± 0.01368 0.17333 ± 0.00211
KSdensity 0.50975 ± 0.04510 0.41720 ± 0.03059 0.99250 ± 0.00217

Ladders n = 4 n = 6 n = 5
MMDdegree 0.00397 ± 0.00043 0.00375 ± 0.00013 0.10733 ± 0.00009
MMDcluster 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00143 ± 0.00128
MMDspectral 0.05223 ± 0.00027 0.05133 ± 0.00030 0.50509 ± 0.00086
KSdensity 0.08125 ± 0.00134 0.08033 ± 0.00122 0.96000 ± 0.00000

Table: Synthetic dataset results, showing the mean and standard error of each
metric on four trials unless otherwise noted.
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Quantitative Comparison on Real Graphs
Dataset + Metric Ours (time) Ours (no time) DeepGMG

DBLP n = 4 n = 6 n = 4
MMDdegree 0.38128 ± 0.00871 0.41075 ± 0.00616 0.06716 ± 0.00766
MMDcluster 0.23977 ± 0.00006 0.23971 ± 0.00001 0.26312 ± 0.01346
MMDspectral 0.43224 ± 0.00550 0.43172 ± 0.00813 0.15566 ± 0.00464
KSdensity 0.96535 ± 0.01185 0.96659 ± 0.00614 0.47656 ± 0.07952

Highschool n = 4 n = 4 n = 3
MMDdegree 0.31491 ± 0.00859 0.39204 ± 0.01191 0.19257 ± 0.01318
MMDcluster 0.21266 ± 0.00165 0.21684 ± 0.00106 0.21780 ± 0.00306
MMDspectral 0.25285 ± 0.01048 0.34389 ± 0.01671 0.29707 ± 0.02010
KSdensity 0.84394 ± 0.01469 0.76664 ± 0.06818 0.23444 ± 0.04132

MIT n = 0 n = 2 n = 2
MMDdegree – 0.64142 ± 0.01921 0.09543 ± 0.00096
MMDcluster – 0.80641 ± 0.00130 0.63332 ± 0.00997
MMDspectral – 0.47489 ± 0.04091 0.09277 ± 0.00473
KSdensity – 0.82450 ± 0.08733 0.86000 ± 0.02121

Tumblr n = 4 n = 5 n = 2
MMDdegree 0.21777 ± 0.03324 0.33572 ± 0.01402 0.06708 ± 0.00416
MMDcluster 0.54088 ± 0.01591 0.57516 ± 0.00149 0.35256 ± 0.01699
MMDspectral 0.18212 ± 0.02233 0.27061 ± 0.01587 0.14842 ± 0.00133
KSdensity 0.74173 ± 0.05625 0.86281 ± 0.02615 0.98324 ± 0.01185

Table: Real-world dataset results, showing the mean and standard error of each
metric on four trials unless otherwise noted.
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Discussion and Future Work

Works well on smaller synthetic graphs

Suspect that real-world graph performance was hindered by
over-smoothing of node embeddings

Reducing number of messages (e.g., window)
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Concluding Remarks

Explored incorporating stochasticity in neural networks

Proposed spike-and-slab approximation for PBP

Applied novel inference method to normalizing flows

Created generative GNN capable of producing sparse graphs
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Thanks

Questions?
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Coupling NF Layers

Transformations can include non-invertible functions fϕ, e.g.,

x1:m = u1:m

x(m+1):2m = u(m+1):2m + fϕ(u1:m)
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Posterior Bootstrap Sampling

Algorithm Posterior bootstrap sampling (Fong et al., 2019)
Require: Observations y1, . . . , yn, base measure Fπ, number of samples
B, concentration parameter α
for b = 1, . . . , B do

Sample m pseudo-observations y∗1:m ∼ Fπ
Sample weights W := (w1:n, w

∗
1:m) ∼ Dir

(
1, · · · , 1, αm , · · · ,

α
m

)
F (b) =

∑n
i=1 wiδyi +

∑m
i=1 w

∗
i δy∗i

θ(b) = argminθ
∑n
i=1 wiℓ(yi, θ) +

∑m
i=1 w

∗
i ℓ(y

∗
i , θ)

end for
return {θ(b)}Bb=1
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Posterior Bootstrap with Shared Parameters

Algorithm Posterior Bootstrap with Shared Parameters
Require: Observations y1, . . . , yn, base measure Fπ, initial shared param-

eter value ϕ0, number of samples B, concentration parameter α, learning
rate τ
ϕ← ϕ0
while not converged do

Sample m pseudo-observations y∗1:m ∼ Fπ
Sample weights W := (w1:n, w

∗
1:m) ∼ Dir

(
1, · · · , 1, αm , · · · ,

α
m

)
F̃ =

∑n
i=1 wiδyi +

∑m
i=1 w

∗
i δy∗i

θ = argminθ
∫
ℓ(y, ϕ, θ)dF̃ (y)

ϕ← ϕ+ τ∇ (
∑n
i=1 wiℓ(yi, ϕ, θ) +

∑m
i=1 w

∗
i ℓ(y

∗
i , ϕ, θ))

end while
ϕ̂← ϕ
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