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Abstract

Probabilistic Neural Networks

Evan Austin Ott, Ph.D.
The University of Texas at Austin, 2022

Supervisor: Sinead Williamson

Neural networks are flexible models capable of capturing complicated data

relationships. However, neural networks are typically trained to make maximum

likelihood predictions that ignore uncertainty in the model parameters. Additionally,

stochasticity is often not incorporated into predictions. Inspired by Bayesian method-

ology, this work explores ways of incorporating uncertainty in neural network-based

models, whether approximating a Bayesian posterior, formulating an alternative to a

Bayesian posterior, or developing generative models inspired by parametric Bayesian

models.

First, we explore the impact of different approximations in approximate Bayesian

inference by considering probabilistic backpropagation (Hernández-Lobato and Adams,

2015), an approximate method for Bayesian neural networks that uses several Gaus-

sian approximations in an assumed density filtering (Opper, 1999) setting. We ex-

plore an alternative approximation using a spike-and-slab distribution, designed to

be a more accurate approximation to the true distribution.

Second, we explore the use of alternative notions of a posterior distribution.

Nonparametric learning (Lyddon et al., 2019; Fong et al., 2019) is a method that

provides principled uncertainty estimates about parameters of interest, while making

minimal assumptions about the parameters. However, a näıve approach will scale
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poorly to large models such as normalizing flows. We show that an approximate

implementation, where some parameters are fixed across all samples from the poste-

rior, allows us to achieve improved predictive performance without incurring excessive

computational costs.

Finally, building on results from edge-exchangeable graphs (Crane and Dempsey,

2016; Cai et al., 2016) and generative graph neural networks (e.g., Li et al. (2018b)),

we propose an edge-based generative graph neural network model. By construction,

our model should be able to more easily learn and replicate the structure of sparse

graphs, which are common in real-world settings. In this ongoing work, we find that

the resulting distributions over graphs are able to capture realistic graph properties

in a variety of settings.
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Chapter 1: Summary of Contributions

Chapter 2 provides an extended background for each of the three main research

areas that follow. This includes a more in-depth discussion of related work that is

important for understanding the breadth and depth of work in the research areas

presented here.

Chapter 3 discusses work to extend probabilistic backpropagation Hernández-

Lobato and Adams (2015), an approximate method for Bayesian inference in neural

networks. The main focus is our attempt to replace a Gaussian approximation with a

spike-and-slab to better model sparsity in the network. We find that, while spike-and-

slab distributions are a better approximation when working with a single node, this

does not translate to improved performance when working with entire networks. This

work is largely represented in our paper and poster, “Spike-and-Slab Probabilistic

Backpropagation: When Smarter Approximations Make No Difference,” (Ott and

Williamson, 2022b) that was accepted at the I Can’t Believe It’s Not Better workshop

at NeurIPS 2022.

Chapter 4 introduces an approximate method to sample from the nonparamet-

ric posterior of a normalizing flow model. We find that by sharing parameters across

bootstrapped samples, we are able to perform approximate posterior inference in a

computationally feasible manner, and obtain performance improvements by incorpo-

rating appropriate prior distributions. Much of what is represented in this chapter is

under submission to AISTATS 2023 (Ott and Williamson, 2022a).

Chapter 5 presents a novel architecture for generative graph neural networks.

Inspired by Bayesian models for sparse random graphs, this model constructs graphs

edge-by-edge, in a manner that allows for graph sparsity. This work is part of a larger

collaboration between myself, Curtis Carter, Elahe Ghalebi, and Sinead Williamson. I

developed the results and methods included in this chapter. Elahe Ghalebi developed
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related methods for link prediction as parallel work that is not presented here. Curtis

Carter and Sinead Williamson acted in an advisory role.

Lastly, several appendices are included. Appendix A includes derivations and

additional experimental results for Chapter 3. Appendix B includes some additional

preliminary experiments performed using the model in Chapter 4 that aided in setting

some model hyperparameters. Finally, Appendix C includes background information

on specific topics that may be helpful to the reader that are not otherwise addressed.
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Chapter 2: Background

In this dissertation, we explore topics in Bayesian inference for neural networks

and in random graphs. In this chapter, we introduce concepts and related work

relevant to the research presented in later chapters.

2.1 Inference Methods

A key problem in statistics is inference, that is the process of inferring the

parameters of a model from data sample. In this section, we briefly outline some

common approaches to statistical inference that will be used or referenced in the rest

of this work.

2.1.1 Maximum Likelihood

One common approach to statistical inference is maximum (log-)likelihood

estimation. Given model parameters θ and data Y = {y1, . . . yn} the likelihood is

L(Y |θ) = Pn
i=1p(yi|θ). Maximizing this quantity with respect to θ yields the maximum

likelihood estimate (MLE) θ̂MLE. This estimate may be obtained in closed-form or

may require the use of numerical methods like (stochastic) gradient descent.

2.1.2 Bayesian Inference

The Bayesian approach incorporates prior subjective uncertainty in the model

parameters, refining that uncertainty in the presence of data through a likelihood

model using Bayes’ rule:

p(θ|Y ) =
p(Y |θ)p(θ)∫
p(Y |θ)p(θ)dθ

,

where p(θ) is the prior and p(Y |θ) is the likelihood. While some prior-likelihood

pairs result in an analytically tractable form of the posterior p(θ|Y ), many models

(including neural networks) do not. Instead, we can apply methods to approximate
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the posterior or to generate samples from the posterior.

2.1.2.1 Approximate Bayesian Inference

As discussed above, in many cases, the true posterior is not available in closed-

form. As a result, we often turn to approximate methods. The maximum a poste-

riori (MAP) estimate yields a point estimate for θ by determining posterior mode,

the value that maximizes the posterior density:

θ̂MAP = argmax
θ

p(θ|Y ).

Like the MLE, the MAP may be available in closed-form, or may need to be computed

by numerical methods. Since the MAP is only a point-estimate, it does not provide

a notion of the uncertainty about θ.

The Laplace approximation (Tierney and Kadane, 1986), however, uses

a simple approximating distribution to the true posterior that relies on the MAP.

Specifically, the Laplace approximation approximates the posterior with a Gaussian

centered on the MAP with covariance matrix determined by the Hessian of the true

posterior evaluated at the MAP. As such, the Laplace approximation yields an ap-

proximate posterior that is highly dependent on the behavior of the true posterior near

the MAP, and may over- or under-estimate the variance and ignores multi-modality.

Variational inference (Jordan et al., 1999) introduces a “variational poste-

rior” qϕ(θ) which is the member of some specified family of distributions qΦ = {qϕ|ϕ ∈
Φ} that minimizes the Kullback-Leibler divergence with respect to the true posterior:

ϕ∗ = argmin
ϕ

KL(qϕ(·)∥p(·|x)).

In practice, the KL divergence cannot be computed exactly due to the marginal

likelihood (or “evidence”) term p(x), and instead the evidence lower bound (ELBO)

is maximized, which is equivalent to minimizing the KL:

ϕ∗ = argmax
ϕ

Eθ∼qϕ [log p(θ, x)]− Eθ∼qϕ [log qϕ(θ)].
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While the choice of family for the variational posterior is highly flexible, a common

approach is to use a mean-field family, where each (possibly multidimensional) pa-

rameter is treated as independent within the variational posterior:

qϕ(θ) =
∏
i

qϕ,i(θi).

Assumed density filtering (ADF, Opper, 1999), also known as Bayesian

online learning, is an approximate Bayesian method. ADF assumes a known para-

metric form of approximate posterior q(θ;ϕ) and iteratively updates the parameters

ϕ upon observing each new datapoint. In particular, q(θ;ϕ(t)) is treated as a prior for

datapoint yt+1, yielding a new posterior

p(θ|yt+1, ϕ
(t)) =

p(yt+1|θ)q(θ;ϕ(t))∫
p(yt+1|θ)q(θ;ϕ(t))dθ

.

In general, p(θ|yt+1, ϕ
(t)) will not be in the same distributional family as q(θ;ϕ),

so it will be projected into the closest distribution with parameters ϕ(t+1). While

various distributional distances could be used, the typical approach is to minimize

the Kullback–Leibler divergence:

ϕ(t+1) = argmin
ϕ

KL
(
p(·|yt+1, ϕ

(t))
∥∥q(·;ϕ)) .

Markov chain Monte Carlo (MCMC) is a method to sample from a Bayesian

posterior, even when the posterior is not available in closed-form. MCMC algorithms

produce a sequence of samples, with each sample dependent on the previous sample

(hence, the “chain”). These samples can be constructed such that they will prov-

ably converge to samples from the true posterior. As such, MCMC methods are the

“gold standard” for Bayesian inference methods (when the posterior is not directly

available) because they converge asymptotically. However, MCMC methods are of-

ten slow to converge, requiring considerable computational resources, especially for

models with a large number of parameters.
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2.1.3 Nonparametric Learning

Typically, the Bayesian framework is interested in parametric models where

we seek the posterior of some parameter θ ∈ Θ ⊂ Rp that indexes some probability

distribution fθ and assumes that the true data-generating distribution F0 is contained

in the model space FΘ = {fθ(·)|θ ∈ Θ}. Recent work (e.g., Lyddon et al. (2018); Fong

et al. (2019)) has explored a nonparametric learning (NPL) approach, where it is no

longer assumed that F0 ∈ FΘ. Instead, we simply consider a parameter of interest

θ0(F0) = argmin
θ

∫
ℓ(x, θ)dF0(x), (2.1)

that is the parameter of some loss function ℓ that we seek to minimize with respect

to the true data-generating distribution F0. In particular, this loss function may be

the negative log-density of a parametric distribution, i.e., − log fθ(x). In that case,

θ0 is known to minimize KL(f0∥fθ). Whereas in conventional Bayesian inference, we

place a prior distribution on θ, reflecting our uncertainty in the space of the model,

NPL considers placing a prior on F0, reflecting our uncertainty about F0 in the space

of the data. This uncertainty in F0, combined with observations x1:n, allows us form

a “nonparametric posterior” on θ as:

π̃(θ|x1:n) =

∫
F

δθ0(F )(θ)π(dF |x1:n),

where the posterior π(F |x1:n) will depend on our choice of prior π(F ).

For the choice of the Dirichlet process prior on F , following Fong et al. (2019),

this gives rise to:

[F |α, Fπ] ∼ DP(α, Fπ)

[F |x1:n] ∼ DP(α + n,Gn)

Gn =
α

α + n
Fπ +

1

α + n

n∑
i=1

δxi
,

where Fπ is the base distribution, and α is the concentration parameter. Of par-

ticular note for the choice of the base distribution is the case where we have some
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historical data x̃1:ñ, which can be represented by an empirical distribution Fπ(x) =

1
ñ

∑ñ
i=1 δỹi(x). By sampling F∗ ∼ DP(α + n,Gn), we can obtain a sample from the

nonparametric posterior on θ as θ∗ = argminθ

∫
ℓ(x, θ)dF∗(x). In particular, because

F∗ will be discrete almost surely, this yields samples as:

θ(F ) = argmin
θ

∞∑
i=1

wiℓ(si, θ),

si
iid∼ Gn, i = 1 :∞,

wi = βi

i−1∏
j=1

(1− βj),

βi ∼ Beta(1, α+ n).

However, we can approximate this process (even for continuous base measures

Fπ, where an exact sample would take infinite computation) with a truncation, using a

finite Dirichlet distribution for generating the weights w, using the posterior bootstrap

in Algorithm 1 from Fong et al. (2019).

Algorithm 1 Posterior bootstrap sampling

Require: Observations y1, . . . , yn, base measure Fπ, number of samples B, concen-
tration parameter α
for b = 1, . . . , B do

Sample m pseudo-observations y∗1, . . . , y
∗
m

iid∼ Fπ

Sample weights W := (w1, · · · , wn, w
∗
1, · · · , w∗m) ∼ Dirichlet

(
1, · · · , 1, α

m
, · · · , α

m

)
F (b) =

∑n
i=1wiδyi +

∑m
i=1w

∗
i δy∗i

θ(b) = argminθ

∑n
i=1wiℓ(yi, θ) +

∑m
i=1w

∗
i ℓ(y

∗
i , θ)

end for
return {θ(b)}Bb=1

2.2 Deep Learning

Neural networks (also known as artificial neural networks) are a class of highly

flexible models useful for an ever-increasing number of problems involving complicated
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data relationships. In this work, we will focus on feedforward neural networks, graph

neural networks (GNNs, see §2.2.1), and normalizing flows. For a more comprehensive

treatment of the former, see Goodfellow et al. (2016). Consider a dataset with n

datapoints with covariates (or inputs) xi ∈ Rp and responses (or outputs) yi ∈ Rd.

Feedforward neural networks (FFNNs, also known as multilayer perceptrons)

are models composed of L “fully-connected” layers of the form:

hℓ(xi) = σℓ(Wℓhℓ−1(xi) + bℓ), ℓ = 1 : L, (2.2)

where h0(xi) = xi is the input to the model; Wℓ is a pℓ × pℓ−1 matrix of real-valued

“weights;” bℓ is a pℓ vector of “biases” (or offsets); and σℓ is an optional non-linear

“activation” function, often taken to be an element-wise application of a function

such as ReLU(x) = max(x, 0) or tanh(x), or a transformation such as softmax(x)i =

exp(xi)/
∑

j exp(xj) (often used for σL in classification problems). A loss function is

defined based on the model’s output hL(xi) and the expected response yi, from which

FFNN parameters are (primarily) estimated using backpropagation (Rumelhart et al.,

1986), a clever application of the chain rule to efficiently backpropagate gradients

through the network using automatic differentiation methods, updating parameter

values by, for example, (stochastic) gradient descent. Generally, we will simplify

notation to use only hℓ rather than hℓ(xi). Additionally, appealing to the network-

like structure formed by the operations to compute hL (and the biological inspiration

of neural networks), we will often refer to (hℓ)j as a “node” or “neuron.” We note

that the output hL may itself represent parameters for a likelihood function, such as

the mean and (log-)variance of a Gaussian in a univariate regression problem, or as

the success probabilities of a categorical distribution in a classification problem.

In practice, neural networks often incorporate many layers, whether fully-

connected, recurrent, convolutional, pooling, or otherwise. The sheer number of layers

of computation gives rise to the notion of a “deep neural network” or “deep learning”

more generally for models that may not involve neural networks specifically.
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2.2.1 Graph Neural Networks

One class of neural networks merits further discussion as background. Graph

neural networks (GNNs Scarselli et al., 2008) use neural networks to incorporate

graph structure into models. In this section, we review the GNN model. Here and

below, graphs G = (V,E) are assumed to be undirected with nodes V = {v1, . . . , vn}
and edges E, unless otherwise noted. In some cases, each node or edge may have

some label.

The GNN model provides for node- or graph-focused applications, for example,

seeking to classify nodes in a graph or classify graphs themselves. GNN introduces

a node state (referred to elsewhere as a node “embedding”) xv, meant to represent

information about node v along with information in the neighborhood of v. In many

ways, the GNN model is an extension of an RNN, where instead of a sequence, each

node is leveraging the neighborhood graph structure. In the undirected, nonpositional

graph setting, the node state is constructed from node labels ℓv, edge labels ℓ(v,u) and

node states in the neighborhood of v:

xv =
∑

u∈N(v)

hw(ℓv, ℓ(v,u), xu, ℓu), v ∈ V,

where hw is some parametric function (e.g., a FFNN). Node outputs ov = gw(xv, ℓv)

depend on the node state and any node labels, and may be aggregated for graph-

focused applications. xv is constructed iteratively

xv(t+ 1) =
∑

u∈N(v)

hw(ℓv, ℓ(v,u), xu(t), ℓu),

on(t) = gw(xv(t), ℓv),

and under mild conditions will arrive at a fixed-point. In this work, we will often refer

to constructions similar to hw(ℓv, ℓ(v,u), xu(t), ℓu) as “messages,” as we can view this

iterative process as message passing between nodes. In the GNN model, the messages

to node v are not directly a function of xv(t). Later work relaxes this constraint while

sacrificing the contraction map guarantees of the original GNN approach.
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2.2.1.1 Generative GNN Models

Of particular note for our work, several models focus on extending GNN for

generative models. Here, we review deep generative models for graphs (DeepGMG

Li et al., 2018b) and graph recurrent neural networks (GraphRNN You et al., 2018),

although there are many such generative GNN models (e.g., Kipf and Welling (2016);

Liao et al. (2019); Grover et al. (2019)).

DeepGMG relies on a node-based graph generation process, relying on three

functions: faddnode(G), faddedge(G, v), and fnode(G, v). Based on the current graph

state, faddnode determines whether to add an additional node or terminate the graph

generation process. If a node is added, then faddedge determines whether to add any

edges from the newest node to any previous nodes, or move on to the next potential

node. Finally, if an edge is to be added, fnodes selects which of the previous nodes to

connect to the new node.

Each of these three functions relies on a neural networks, and on node and

graph embeddings. Node embeddings are generated using a message-passing step

before the step to add a new node (optionally, also before each edge is added). With

embedding hv for node v and any edge label xu,v for edge (u, v), we have:

av =
∑

u:(u,v)∈E

fmsg(hu, hv, xu,v)

h′v = fupdate(av, hv),

where av is an aggregation of all messages sent to node v. In practice, the mes-

sage function fmsg is taken to be a FFNN while the update function fupdate is it-

self an RNN (specifically a GRU). The node embeddings are projected to a higher-

dimensional space and aggregated to produce the graph embedding using a gating

function. While our graph-generation process differs from DeepGMG, we will rely on

a similar message-propagating construction to update node embeddings.

You et al. (2018) presents graph recurrent neural networks (GraphRNN). Con-

ditioned on a node ordering π, the graph G can equivalently be expressed using the
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adjacency matrix Aπ ∈ Rn×n, where Aπ
i,j = 1 [(π(vi), π(vj) ∈ E]. Furthermore, Aπ is

composed into sequence Sπ where

Sπ
i = (Aπ

1,i, A
π
2,i, . . . , A

π
i−1,i)

⊤, ∀i ∈ {2, . . . , n}, (2.3)

in other words, the adjacency vectors, with Sπ
1 and Sπ

n+1 as start- and end-of-sequence

tokens, respectively. GraphRNN sets out to learn the distribution of sequences, which

is decomposed as

p (Sπ) =
n+1∏
i=1

p(Sπ
i |Sπ

1 , . . . , S
π
i−1) =

n+1∏
i=1

p(Sπ
i |Sπ

<i). (2.4)

GraphRNN uses a graph-level RNN to parameterize p (Sπ
i |Sπ

<i), which is used in a

node-based graph generation process. One limitation of the GraphRNN approach is

its requirement of a maximum adjacency vector size. While this does not necessarily

limit the total number of nodes in the graph (nodes can be constrained to only have

edges to the most recent k nodes), this does pose a problem for graphs where nodes

enter the graph far apart in time.

2.2.2 Normalizing Flows

Normalizing flows are, in one sense, nothing more than a complicated trans-

formed distribution, composed of a base distribution h and a sequence of invertible

transformations g(u) called a “flow.” Together, these construct a family of distribu-

tions pX using a change-of-variables transformation:

pX(x) = h(g−1(x))

∣∣∣∣det dg−1(X)

dX

∣∣∣∣
X=x

.

What makes normalizing flow models interesting is the increase in flexibility

of the flow due to innovations in the transformations. In particular, the flow can be

composed of layers of transformations, including layers that include neural networks

(see discussion below). As a result, this yields a family of resultant transformations

– resembling what one might expect from neural networks generally – useful for a
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variety of applications including density estimation, while often enforcing a diagonal

Jacobian matrix to maintain efficient computation of the log-likelihood. Kobyzev

et al. (2021) provides an introduction and review of normalizing flows, but a few

particular models and innovations are discussed below.

Coupling layers are able to incorporate highly flexible transformations on a

subset of the dimensions. For example, let x1, x2, u1, u2 ∈ Rd with x = [x1;x2]

and u = [u1;u2]. We can include a non-invertible transformation (such as a neural

network) g : Rd → Rd by applying the identity transformation the first subset of

dimensions:

x = f−1(u)

x1 = u1

x2 = u2 + g(u1)

. This yields an invertible transformation of f−1(u) such that f(x) = [x1;x2− g(x1)].

In fact, for this example, the Jacobian is simply 1, yielding what is known as a

“volume-preserving” flow. We can use many such coupling layers (alternating which

components have the identity transformation applied) to construct highly-flexible

flows.

Non-linear independent components estimation (NICE, Dinh et al., 2014) ap-

plies this coupling idea to allow for a (typically) non-invertible neural network step

as part of a transformation, but only on one block of the data at a time. This is eas-

ily inverted: one block is the input to the network, and copied to the output block.

NICE uses additive coupling layers to avoid computing the Jacobian determinant,

but allows for a single scaling layer which gives a constant term in the log-likelihood.

Density estimation using real NVP (Dinh et al., 2016) follows up to NICE and

provides a helpful comparison to VAEs, namely that VAEs use an approximate infer-

ence network (the encoder mapping x to z). This work allows for high-dimensional

highly nonlinear bijections that remain computationally efficient. Here, we simply
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recognize that the determinant of a triangular matrix is simply the product of the

diagonal elements. They now use affine coupling layers (rather than simply additive),

allowing for scaling, creating a shift-and-scale: yd+1:D = xd+1:D⊙exp(s(x1:d))+t(x1:d),

where ⊙ is element-wise product. Importantly, the diagonal elements of the Jacobian

matrix are simple and do not require the Jacobian of s or t (obviously, to maximize

the log-likelihood, there will be gradients of s and t, but we need not deal with the

Hessian), and neither s nor t need to be themselves invertible.

The masked autoregressive flow (MAF, Papamakarios et al., 2017) constructs

a normalizing flow for density estimation in an autoregressive model. In particular,

it includes layers built from masked autoencoder for distribution estimation (MADE,

Germain et al., 2015), conditioning each component of the output xi in a particular

layer on the previous variables x1:i−1.

2.3 Bayesian Neural Networks

Typically, inference in neural network models is performed by applying stochas-

tic gradient descent in order to maximize the log-likelihood of the data (or to minimize

some other loss function). As discussed above, this ignores inherent uncertainty in

model parameters, leading many researchers to apply Bayesian inference methods to

neural networks. In this section, we describe common approaches to Bayesian neural

networks.

Bayesian neural networks (MacKay, 1992b; Neal, 1995), in an effort to quantify

uncertainty in the neural network weights (and biases), apply a Bayesian approach,

incorporating a prior on the weights with an explicit likelihood (rather than a more

general loss function). Typically, this prior is assumed to be Gaussian. The posterior

is generally not available in closed-form, so MCMC (Neal, 1995) or approximate

methods like variational inference (Graves, 2011; Blundell et al., 2015) are typically

used. The approximate posterior (or samples from the posterior in the case of MCMC)

can then be used for the posterior predictive distribution or any other tasks.
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2.3.1 Probabilistic Backpropagation

A particular approximate Bayesian method for neural networks relevant to our

work is probabilistic backpropagation (PBP, Hernández-Lobato and Adams, 2015).

PBP assumes an FFNN architecture (with input scaling at each layer) with ReLU

activation functions in a regression setting, an independent Gaussian prior on every

element of the weight matrices (including bias vectors by augmenting the input to

each layer with a constant 1), and with Gamma priors on the precision for the weight

priors and likelihood:

p(y|W,X, γ) =
N∏

n=1

N(yn|f(xn;W), γ−1)

p(W|λ) =
L∏

ℓ=1

nℓ∏
i=1

nℓ−1+1∏
j=1

N(wij,ℓ|0, λ−1)

p(λ) = Gamma(λ|αλ
0 , β

λ
0 )

p(γ) = Gamma(γ|αγ
0 , β

γ
0 ),

where W concatenates the weight matrices in all ℓ layers, nℓ is the number of nodes

in layer ℓ, and αλ
0 , β

λ
0 , α

γ
0 , β

γ
0 are fixed hyperparameters.

The true posterior on the weights is not available in closed-form. Instead, PBP

assumes a mean-field Gaussian approximate posterior on the weights, with indepen-

dent Gamma approximate posteriors for the two precision parameters:

q(W, γ, λ) =

(
L∏

ℓ=1

nℓ∏
i=1

nℓ−1+1∏
j=1

N(wij,ℓ|mij,ℓ, vij,ℓ)

)
Gamma(λ|αλ, βλ)Gamma(γ|αγ, βγ),

where mij,ℓ and vij,ℓ are the approximate posterior’s mean and variance of weight wij,ℓ

(for simplicity, we omit discussion here about parameters λ and γ, though Hernández-

Lobato and Adams (2015) gives a full treatment). To learn this approximate posterior

q, PBP uses assumed density filtering (see Opper (1999) and discussion above in

§2.1.2.1), relying on specific properties of Gaussian distributions (Minka, 2001) that

result in a method resembling backpropagation. Specifically, with the current beliefs
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regarding weight w as expressed by the approximate posterior being q(w;m, v) =

N(w|m, v), we note that the Bayesian way to update those beliefs upon seeing a new

datapoint (x∗, y∗) would be expressed by a distribution s(w) = f(x∗, y∗|w)q(w)Z−1

where Z−1 is the normalization constant and f represents the likelihood.

In the ADF setting, we select the distribution qnew in the approximate posterior

family that minimizes KL(s∥qnew). In general, this is highly non-trivial, but PBP

makes note that the solution for the Gaussian family has a gradient-based update,

mnew = m+ v
∂ logZ

∂m
vnew = v − v2

[(
∂ logZ

∂m

)2

− 2
∂ logZ

∂v

]
.

While the normalization constant is not available in closed-form, PBP makes sev-

eral simplifying assumptions to develop a closed-form approximation. Specifically,

PBP makes the following assumption for the form of the normalization constant for

datapoint (x∗, y∗):

Z =

∫
N(y∗|f(x∗|W), γ−1)q(W, γ, λ)dWdγdλ

≈ N(y∗|mzL , βγ/(αγ − 1) + vzL),

where mzL and vzL are the mean and variance of the neural network’s output layer,

zL, under the approximate posterior. The construction of the network is composed

of the steps:

z0 = x∗,

aℓ = Wℓzℓ−1/
√

nℓ−1 + 1, ℓ = 1 : L,

bℓ = ReLU(aℓ), ℓ = 1 : L− 1,

zℓ = [bℓ; 1], ℓ = 1 : L− 1,

with the output zL = aL. PBP proposes a layer-by-layer moment-matching procedure

whereby the uncertainty of weights is propagated by approximating the distributions

for aℓ, bℓ, zℓ with diagonal multivariate Gaussians, such that

zℓ ∼ N(mzℓ , vzℓ) aℓ ∼ N(maℓ , vaℓ) bℓ ∼ N(mbℓ , vbℓ)
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with the following forms:

maℓ = Mℓm
zℓ−1/

√
nℓ−1 + 1,

vaℓ = [(Mℓ ◦Mℓ)v
zℓ−1 + Vℓ(m

zℓ−1 ◦mzℓ−1) + Vℓv
zℓ−1 ]/(nℓ−1 + 1),

mbℓ
i = Φ(αi)v

′
i,

vbℓi = mbℓ
i v
′
iΦ(−αi) + Φ(αi)v

aℓ
i (1− γi(γi + αi)),

v′i = maℓ
i +

√
vaℓi γi,

αi =
maℓ

i√
vaℓi

,

γi =
ϕ(−αi)

Φ(αi

,

mzℓ = [mbℓ ; 1],

vzℓ = [vzℓ ; 0],

where ϕ and Φ are the pdf and cdf of the standard Gaussian, and Mℓ and Vℓ are

matrices with q(wij,ℓ) = N(wij,ℓ|Mij,ℓ, Vij,ℓ).

With this approximation to the mean and variance of the output layer zℓ, we

can approximate the normalizing constant Z and update the mean and variance of

the approximate posterior for each weight, as above. As such, with a gradient-based

update in hand for the approximate posterior, automatic differentiation software can

be employed. In practice, PBP also includes an expectation propagation step after

each pass through the data, although that will not be the focus of our work in Chapter

3.
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Chapter 3: Spike-and-Slab Probabilistic

Backpropagation1

Abstract

Probabilistic backpropagation (PBP, Hernández-Lobato and Adams,

2015) is an approximate Bayesian inference method for deep neural

networks, using a message-passing framework. These messages—

which correspond to distributions arising as we propagate our input

through a probabilistic neural network—are approximated as Gaus-

sian. However, in practice, the exact distributions may be highly

non-Gaussian. In this paper, we propose a more realistic approx-

imation based on a spike-and-slab distribution. Unfortunately, in

this case, better approximation of the messages does not translate

to better downstream performance. We present results comparing

the two schemes and discuss why we do not see a benefit from this

spike-and-slab approach.

3.1 Introduction

Deep neural networks are flexible non-linear models common to domains with

complicated data relationships. However, despite having many unknown model pa-

rameters, many neural networks do not attempt to represent model (epistemic) or

data (aleatoric) uncertainty. Bayesian approaches to neural networks could capture

1This chapter will appear as: Evan Ott and Sinead Williamson. Spike-and-Slab Probabilis-
tic Backpropagation: When Smarter Approximations Make No Difference. In I Can’t Believe It’s
Not Better Workshop: Understanding Deep Learning Through Empirical Falsification, 2022b. URL
https://openreview.net/forum?id=iYAdBHSA_Pt.
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this uncertainty but are typically rendered intractable in closed-form. MCMC-based

methods (Neal, 1995; Cobb and Jalaian, 2021) offer asymptotic guarantees but are

typically slow to converge. Instead, it is typical to use approximate inference algo-

rithms, such as those based on Laplace approximations (MacKay, 1992a; Daxberger

et al., 2021) or variational inference (Graves, 2011; Blundell et al., 2015).

Probabilistic backpropagation (PBP, Hernández-Lobato and Adams, 2015) is

an example of an approximation-based approach for Bayesian deep learning. Like

many such approaches, it uses a mean-field approximation to the posterior, which is

inferred using a message-passing algorithm based on assumed density filtering (Opper,

1999). The resulting algorithm is reminiscent of backpropagation; however, rather

than propagating a single function estimate through a neural network, PBP propa-

gates distributions representing our estimated posterior uncertainty. PBP approxi-

mates these distributions, or “messages,” using a Gaussian, whose parameters are a

known function of the means and variances of the per-weight distributions, allowing

us to update those weight parameters using gradient information in a backwards pass.

In practice, the true messages can be highly non-Gaussian, since they have

been propagated through a ReLU or similar nonlinearity. Using a Gaussian approxi-

mation risks ignoring sparsity inherent in the true message structure. In this paper,

we show that the PBP algorithm can be modified to use sparse messages, parame-

terized using a spike-and-slab distribution. Computational costs are not significantly

increased over Gaussian messages.

Unfortunately, we discover what many before us have discovered in different

contexts: Gaussian approximations usually work pretty well. Closer investigation

shows that, if we use bias terms in our neural network (as is typical), any theo-

retical advantage of our spike-and-slab approach evaporates. In the absence of a

bias term, our approximation does differ from the standard PBP approach, and at

a per-message level does indeed provide better approximations to the true message.

However, this advantage does not translate into a significant difference in overall
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Figure 3.1: Left, the true distribution obtained by applying a ReLU to a N(0, 1)
random variable, with a mixture of a truncated Gaussian and a “spike” (with its
probability indicated with an overlayed vertical bar) at X = 0. Center, the Gaussian
density obtained in the PBP approximation. Right, the spike-and-slab distribution
obtained by our approximation (with the spike probability indicated with an overlayed
vertical bar).

performance. While this is a negative result, and while it remains possible that

alternative approximations could yield improved performance, our work indirectly

highlights the fact that Gaussian approximations to non-Gaussian distributions are

often a good choice in practice.

3.2 Probabilistic Backpropagation

We consider the setting of feed-forward neural networks (FFNNs) with ReLU

activation σ(x) = max(x, 0), such that

z(ℓ)(x) =σ
(
W(ℓ)

[
z(ℓ−1)(x); 1

]/√
nℓ−1 + 1

)
, ℓ = 1 : L− 1

ŷ = W(L)
[
z(L−1)(x); 1

]
/
√

nL−1 + 1 ,
(3.1)

with [a; b] indicating concatenation, nℓ indicating the number of nodes in layer ℓ, and

z(0)(x) = x. Let W = (W(ℓ))Lℓ=1 where W
(ℓ) = (w

(ℓ)
ij )

nℓ−1+1
i=1

nℓ

j=1
be the set of all weights

(which includes the biases).2 We include a scaling factor of
√
nℓ−1 + 1 to make the

2We adopt the convention throughout that x indicates a scalar; x a vector; X a matrix; and X a
list of matrices.
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scale of the input to each neuron invariant to the size of the previous layer, following

Hernández-Lobato and Adams (2015).

To make the model Bayesian, we place a spherical Gaussian prior on the

weights, meaning the z(ℓ)(x) and ŷ are now random, and we assume yi ∼ N(ŷi, γ
−1).

Since the number of weights can be large, and the ReLU nonlinearity removes the

possibility of analytic tractability, posterior inference can be computationally chal-

lenging.

Probabilistic backpropagation (PBP, Hernández-Lobato and Adams, 2015) is

an approximate inference technique appropriate for this setting. PBP uses assumed

density filtering (ADF, Opper, 1999) to update a mean-field approximation to the

true posterior,3

q(W) =
∏
ℓ

q(ℓ)(W(ℓ)) =
∏
i,j,ℓ

N(w
(ℓ)
ij |m

(ℓ)
ij , v

(ℓ)
ij ). (3.2)

The mean and variance parameters of the weights (m
(ℓ)
ij and v

(ℓ)
ij ) are updated

by propagating uncertainty through the network, that is, by evaluating the distri-

butions over the representations z(ℓ)(x). PBP approximates these distributions with

Gaussian distributions, obtained through moment matching. Leveraging some prop-

erties of Gaussian distributions (Minka, 2001), PBP is able to update the parameters

of the approximate posterior in an approach analogous to backpropagation. Finally,

PBP also incorporates an expectation propagation step to further refine the approx-

imate posterior after each full pass through the training data.

Several extensions to the PBP framework have provided improvements, such

as including approximations appropriate for classification (Ghosh et al., 2016), in-

corporating minibatching (Benatan and Pyzer-Knapp, 2018), and using non-diagonal

Gaussians as the approximating distribution (Sun et al., 2017). Similar approaches

have been used in a variational inference context (Roth and Pernkopf, 2016; Wu et al.,

3We ignore here terms concerning the observation noise variance and the prior variance of the
Gaussians.
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2018; Dera et al., 2019; Haußmann et al., 2020) and in a hybrid Bayesian/maximum

likelihood context (Gast and Roth, 2018).

3.2.1 Limitations of a Gaussian Approximation

PBP approximates the distribution of z(ℓ)(x)—that is, the “messages” in the

ADF algorithm—using Gaussians. However, the ReLU nonlinearity in Equation 3.1

means that the true distributions can be highly non-Gaussian. As a simple example,

consider the distribution over the jth element of the first-layer representation of an

input x, z
(1)
j (x) = σ(w

(1)
j

⊤
[x; 1]). We are approximating the posterior distributions

over w
(1)
ij using Gaussians, meaning that the distribution implied by w⊤j [x; 1] is also

Gaussian. However, once this has passed through a ReLU, the distribution over

z
(1)
j (x) is a mixture of a Dirac delta distribution (or “spike”) at x = 0 and a Gaussian

truncated to the domain (0,∞). See Figure 3.1 for a demonstration.

3.3 Spike-and-Slab Probabilistic Backpropagation

An exact implementation of ADF in the FFNN would send messages based on

the true distribution over the z(ℓ)(x), given the current approximating distribution

q(W). We will refer to this true distribution as q(z(ℓ))4. This is computationally

infeasible: while we can calculate this distribution for a single layer where the input

is the observed x (as shown above), on later layers the inputs are themselves the

propagated distributions. PBP chooses to approximate these with diagonal Gaussian

distributions q̃PBP(z
(ℓ)), obtained through moment matching.

We propose using a more sophisticated approximation of the messages q(z(ℓ)).

At the first layer, we know that q(z(1)) is a spike-and-slab distribution with truncated

Gaussian slab. We choose to model the resulting sparsity directly using a spike-and-

slab distribution with a (non-truncated) Gaussian slab, such that for node i in layer

4For notational conciseness, we hereafter write z(ℓ) in place of z(ℓ)(x)
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ℓ, we have

q̃SSPBP(z
(ℓ)
i ) = (1− ρ̃

(ℓ)
i )δ0(z

(ℓ)
i ) + ρ̃

(ℓ)
i N(z

(ℓ)
i |m̃

(ℓ)
i , ṽ

(ℓ)
i ), (3.3)

with slab probability ρ̃
(ℓ)
i , slab mean m̃

(ℓ)
i , and slab variance ṽ

(ℓ)
i . We refer to the

resulting algorithm as Spike-and-Slab PBP (SSPBP).

3.3.1 Approximating Messages Using a Spike-and-Slab

We wish to approximate some distribution p, with a spike-and-slab distribu-

tion q of the form of Equation 3.3. We can do so by minimizing the Kullback-Leibler

divergence KL(p∥q), yielding the following parameters (see Appendix A.1.1 for deriva-

tion):

ρ = PX∼p[X ̸= 0], m =
1

ρ
EX∼p[X], v =

1

ρ

(
VX∼p[X]− ρ(1− ρ)m2

)
.

Note that this is similar to the moment-matching setting of PBP: we first match the

spike probability (1− ρ), and then match the first and second moments.

Consider the jth node of the ℓth layer of our FFNN. Following Hernández-

Lobato and Adams (2015), we augment the incoming message with a bias term, so that

ρ̃
(ℓ)
nℓ+1 = 1, m̃

(ℓ)
nℓ+1 = 1, and ṽ

(ℓ)
nℓ+1 = 0. Let M(ℓ) = (m

(ℓ)
i )nℓ

i=1 and m
(ℓ)
i = (m

(ℓ)
ij )

nℓ−1+1
j=1 be

the means of the approximate posteriors q(w
(ℓ)
ij ) of the weights of the FFNN, and let

V(ℓ) = (v
(ℓ)
i )nℓ

i=1 and v
(ℓ)
i = (v

(ℓ)
ij )

nℓ−1+1
j=1 be the corresponding variances (Equation 3.2).

In the absence of a nonlinearity (e.g., for a final regression layer), we approximate the

message z
(ℓ)
j with a spike-and-slab distribution, with slab probability ρ̃

(ℓ,linear)
j , slab

mean m̃
(ℓ,linear)
j , and slab variance ṽ

(ℓ,linear)
j where

ρ̃
(ℓ,linear)
j ≡ ρ̃(ℓ,linear) = 1−

nℓ−1+1∏
i=1

(1− ρ̃
(ℓ−1)
i ), m̃

(ℓ,linear)
j =

m
(ℓ)
j

⊤ (
ρ̃(ℓ−1) ◦ m̃(ℓ−1)

)
ρ̃(ℓ,linear)

√
nℓ−1 + 1

,

(3.4)

ṽ
(ℓ,linear)
j =

ci
(nℓ−1 + 1) ρ̃(ℓ,linear)

−
(
1− ρ̃(ℓ,linear)

) (
m̃

(ℓ,linear)
j

)2
,
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where ◦ indicates the element-wise Hadamard product and

c =V(ℓ)
(
ρ̃(ℓ−1) ◦ m̃(ℓ−1) ◦ m̃(ℓ−1)

)
+
(
M(ℓ) ◦M(ℓ)

) (
ρ̃(ℓ−1) ◦ ṽ(ℓ−1)

)
+V(ℓ)

(
ρ̃(ℓ−1) ◦ ṽ(ℓ−1)

)
+
(
M(ℓ) ◦M(ℓ)

) (
ρ̃(ℓ−1) ◦

(
1− ρ̃(ℓ−1)

)
◦ m̃(ℓ−1) ◦ m̃(ℓ−1)

)
.

If we pass this through a ReLU, we have

ρ̃
(ℓ,ReLU)
j = ρ̃(ℓ,linear)Φ (αj) , m̃

(ℓ,ReLU)
j = m̃

(ℓ,linear)
j + γj

√
ṽ
(ℓ,linear)
j ,

ṽ
(ℓ,ReLU)
j =

(
1− γjαj − γ2

j

)
ṽ
(ℓ,linear)
j ,

with intermediate values αj = m̃
(ℓ,linear)
j /

√
ṽ
(ℓ,linear)
j and γj = ϕ (αj)/Φ (αj) , where ϕ

and Φ are the PDF and CDF of a standard Gaussian, respectively. Derivations are

provided in Appendix A.1.

3.4 Empirical Analysis

We begin by numerically validating our approximation before exploring how

well it performs when used in a Bayesian FFNN. Code can be found at the anony-

mous repository https://github.com/SSPBP/SSPBPcode. All hyperparameters fol-

low those used by Hernández-Lobato and Adams (2015) unless otherwise stated.

3.4.1 Quality of the Spike-and-Slab Approximation

To explore why the spike-and-slab approximation should yield a better repre-

sentation of the propagated probability distributions than a Gaussian, we performed

a simulation study. Here, we explore a ReLU transformation T = ReLU(XW ) ap-

plied to the product of two independent Gaussians X and W . We apply the PBP

and SSPBP approximations to determine how the two approaches would approximate

the resultant distribution, then we compare 10,000 samples of the approximate dis-

tributions to a ground truth sample by computing the maximum mean discrepancy

(MMD) with a squared exponential kernel K(x, y) = exp(−γ(x− y)2), setting γ = 1.
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The results are summarized in Table 3.1. The first two columns show the parame-

ters of the underlying distributions, and the third column shows the percent of the

distribution that is saturated to zero by the ReLU nonlinearity. The fourth column

shows the MMD between two size-10,000 samples from the true distribution, to give

an idea of the scale of the differences. Next, we see the MMD between the PBP ap-

proximation and the true distribution (column 5) and the MMD between our SSPBP

approximation and the true distribution (column 6). We see from these results that,

in cases where the true distribution has non-trivial sparsity, samples from SSPBP

more closely match the true distribution compared with PBP, giving credence to the

intuition that a spike-and-slab approximation should improve the PBP framework.

pX pW % Saturated Same PBP SSPBP

N(0, 1) N(0, 1) 49.86% 0.000028 0.066 0.020
N(1, 1) N(3, 1) 16.24% 0.000090 0.031 0.015
N(1, 1) N(−3, 1) 84.44% 0.000055 0.21 0.0038
N(3, 1) N(3, 1) 0.22% 0.00025 0.0043 0.0051
N(3, 1) N(−3, 1) 99.72% 0.00000058 0.017 0.00024

Table 3.1: Simulation study of how well SSPBP approximates the true distribution
after a single layer, reporting the MMD between a ground truth sample and approx-
imations obtained using either PBP or SSPBP, along with the MMD between two
ground truth samples.

3.4.2 Evaluation as Part of a Bayesian FFNN

Since our spike-and-slab approximation mimics the sparsity inherent in the

FFNN, we expected it to achieve better performance. To evaluate this, we compared

our approach to PBP, modifying the existing official Theano (Theano Development

Team, 2016) implementation, which was released under a BSD 3-Clause “New” or

“Revised” License.5 We applied several different model architectures to eight regres-

sion datasets used in Hernández-Lobato and Adams (2015). We trained the models

5https://github.com/HIPS/Probabilistic-Backpropagation
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using 40 training epochs (without early stopping), with an 80%-20% training-test

split, repeating the process five times for each dataset-model comparison (following

the original PBP settings). We report the mean and standard error of the average

test set RMSE across those five repetitions in Table 3.3. Running all experiments in

Tables 3.3 and 3.4 took under 12 hours on an Intel i5 4 core 3.2 GHz desktop, using

CPU computation.

As Table 3.3 indicates, the performance is comparable across the two models.

Disappointingly, there is no significant difference between the two approaches.

A hint at why this is can be seen by considering the estimate of the spike prob-

ability in Equation 3.4. Our approximation only captures spikes at zero. However,

if our FFNN includes bias terms, this bias will translate spikes at zero in z(ℓ−1) to

non-zero locations in z(ℓ), meaning our approximation will not capture them. This

means all mass is placed on the slab, rendering our approximation identical to model-

ing solely with a Gaussian as in the original PBP framework. We show this formally

in Appendix A.2. The variation in Table 3.3 is likely due to numerical instability,

using different random seeds, or other similar issues, not as a result of improving the

internal approximations of the PBP framework.

The algorithms do however differ if we do not include a bias term. In Table 3.4

we repeat our experiments without a bias term. Unfortunately, despite the fact that

we are now indeed comparing different update rules, there remains no significant

difference between the algorithms.

We hypothesise that this may be because the slab probabilities ρ̃(ℓ,linear) would

tend toward one given that the product in Equation 3.4 will tend toward zero in all

but the most extreme cases. To test this, we compute ρ̃(ℓ,linear) for the linear layers

in several architectures trained on the Boston dataset. See Table 3.2 for results.

Note that ρ̃(1,linear) is always one by construction, since the signal has not passed

through any nonlinearities. For later layers, even though the signal has passed through

nonlinearities, we see that the slab probability does tend towards one in practice, even
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for narrow networks.

Table 3.2: Mean and standard error of the average slab probability in linear layers,
ρ̃(ℓ,linear), on test set observations for various architectures on the Boston dataset. 30
trials were completed for each choice of hidden layers.
† Some trials removed due to numerical instabilities.

Hidden Layers ρ̃(1,linear) ρ̃(2,linear) ρ̃(3,linear) Output ŷ

5 1.000± 0.000 – – 0.976± 0.007
50 1.000± 0.000 – – 1.000± 0.000

5× 5 1.000± 0.000 0.962± 0.007 – 0.968± 0.006†

50× 50 1.000± 0.000 1.000± 0.000 – 1.000± 0.000
5× 5× 5 1.000± 0.000 0.958± 0.008 0.970± 0.008† 0.971± 0.009†

50× 50× 50 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

3.5 Related Work6

Perhaps the most popular BNN approach is variational inference. This ap-

proach supposes a family of distributions for the (variational) posterior and selects

the particular distribution with the lowest Kullbeck-Leibler (KL) divergence to the

true posterior by way of optimizing the evidence lower bound (ELBO). Variational

inference has several benefits, including leveraging existing automatic differentiation

tools. Existing work (Graves, 2011; Blundell et al., 2015) has applied variational infer-

ence to Bayesian neural networks. However, in this setting, samples of the variational

posterior are required to propagate through the network, which can be computation-

ally expensive.

Recent work has explored the use of a spike-and-slab prior in related contexts.

Bai et al. (2019, 2020) employ a spike-and-slab prior and variational posterior family

in the context of neural networks, but again, they require samples from the posterior

to assess the uncertainty in the posterior predictive distribution. Sun et al. (2022)

explored the use of stochastic gradient Hamiltonian Monte Carlo for a spike-and-slab

6This section does not appear in Ott and Williamson (2022b).
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1 Layer
50 Nodes

Dataset PBP SSPBP

Boston Housing 3.554±0.179 3.566±0.198
Combined Cycle Power Plant 4.117±0.037 4.116±0.033
Concrete Compression Strength 5.616±0.125 5.662±0.105
Energy Efficiency 1.857±0.081 1.856±0.079
Kin8nm 0.098±0.001 0.100±0.001
Naval Propulsion 0.006±0.000 0.006±0.000
Wine Quality Red 0.655±0.003 0.654±0.003
Yacht Hydrodynamics 1.344±0.061 1.367±0.071

2 Layers
10 Nodes

Dataset PBP SSPBP

Boston Housing 3.097±0.147 2.997±0.165
Combined Cycle Power Plant 4.088±0.067 4.096±0.066
Concrete Compression Strength 6.031±0.161 5.921±0.158
Energy Efficiency 1.477±0.043 1.660±0.112
Kin8nm 0.111±0.004 0.109±0.002
Naval Propulsion 0.006±0.000 0.006±0.000
Wine Quality Red 0.653±0.012 0.652±0.008
Yacht Hydrodynamics 1.064±0.072 1.131±0.063

Table 3.3: Mean and standard error of average test set RMSE of PBP and SSPBP,
on eight datasets.

prior in a BNN setting. Fang et al. (2020) uses stochastic expectation propagation (Li

et al., 2015), an inference method similar to the one used in PBP, with spike-and-slab

prior and approximate posterior, but in a simpler probit regression setting.

3.6 Discussion

In this paper, we presented SSPBP, a spike-and-slab variant of probabilistic

backpropagation. Ultimately, we determine that, empirically and analytically, the use

of a spike-and-slab approximation does not improve performance, despite seeming to
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be a more intuitive approximation for the problem. While using a spike-and-slab

approximate posterior distribution for model parameters could—in theory—provide

better results in a bias-free FFNN, our investigation of this setting casts doubt on this

intuition: the spike-and-slab approximation is able to model sparsity inherent to the

ReLU activation function but fails to produce better empirical results, likely due to

the fact that, in practice, the slab probability tends to saturate towards one. Possible

future directions could include assessing alternative approximations or incorporating

spike-and-slab approximations in formulations of approximate Bayesian inference like

variational inference; however, it appears that a Gaussian approximation is hard to

beat.
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1 Layer
50 Nodes

Dataset PBP SSPBP

Boston Housing 3.529±0.296 3.544±0.301
Combined Cycle Power Plant 4.300±0.054 4.295±0.052
Concrete Compression Strength 7.092±0.108 7.010±0.156
Energy Efficiency 1.788±0.038 1.789±0.039
Kin8nm 0.159±0.002 0.158±0.002
Naval Propulsion 0.006±0.000 0.006±0.000
Wine Quality Red 0.621±0.013 0.618±0.013
Yacht Hydrodynamics 6.200±0.269 6.319±0.282

2 Layers
10 Nodes

Dataset PBP SSPBP

Boston Housing 3.809±0.295 3.865±0.322
Combined Cycle Power Plant 4.190±0.017 4.188±0.023
Concrete Compression Strength 6.823±0.214 6.668±0.237
Energy Efficiency 1.699±0.041 1.617±0.019
Kin8nm 0.126±0.001 0.125±0.001†
Naval Propulsion 0.005±0.000 0.006±0.000
Wine Quality Red 0.635±0.011 0.633±0.014
Yacht Hydrodynamics 3.898±0.245 4.276±0.390

Table 3.4: Mean and standard error of average test set RMSE for the bias-free versions
of PBP and SSPBP, on eight datasets.
† Due to numerical issues, the trials for this model were repeated with a different
random seed.
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Chapter 4: Nonparametric Posterior Normalizing

Flows1

Abstract

Normalizing flows allow us to construct complex probability distri-

butions from simpler distributions using a change-of-variables trans-

formation. If we model this transformation using an invertible neural

network with an analytically tractable Jacobian, we can train that

neural network to perform maximum likelihood density estimation

(Dinh et al., 2014).

Such maximum likelihood density estimation is likely to overfit, par-

ticularly if the number of observations is small. Traditional Bayesian

approaches offer the prospect of capturing posterior uncertainty, but

come at high computational cost and do not provide an intuitive

way of incorporating prior information. A nonparametric learning

approach (Lyddon et al., 2018) allows us to combine observed data

with priors on the space of observations. We present a scalable

approximate inference algorithm for nonparametric posterior nor-

malizing flows, and show that the resulting distributions can yield

improved generalization and uncertainty quantification.

1Some work presented here is currently under review as part of: Evan Ott and Sinead Williamson.
Nonparametric Posterior Normalizing Flows. submitted, 2022a.
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4.1 Introduction2

Normalizing flows (Tabak and Vanden-Eijnden, 2010; Dinh et al., 2014; Rezende

and Mohamed, 2015) allow us to construct flexible families of probability distribu-

tions on Rd using a change-of-variables approach. The resulting probability density

function is modeled using an invertible, differential neural network gϕ(z) and a known

distribution h(·) on Rd, such that

pϕ(x) = h
(
g−1ϕ (x)

) ∣∣∣∣∣det ∂g−1ϕ (x)

∂x

∣∣∣∣∣ .
Since gϕ is invertible, and assuming the Jacobian is analytically tractable, we can use

the trained flow to either generate samples from pϕ, or to evaluate the likelihood of

observations x.

When used for density estimation, normalized flows are typically trained to

maximize the likelihood of the observations (possibly incorporating some regulariza-

tion terms). This means we do not capture epistemic uncertainty, and are at risk of

overfitting, particularly when working with small datasets. One solution might be to

adopt ideas from Bayesian deep learning to approximate the Bayesian posterior, by

assuming a prior distribution over the weights of the neural network (MacKay, 1992a;

Graves, 2011; Neal, 1995; Blundell et al., 2015). This has two drawbacks. Firstly,

posterior Bayesian inference in neural networks is typically computationally challeng-

ing. Secondly, we lose one of the key advantages of a Bayesian approach: the ability

to incorporate meaningful prior knowledge. While, for example, a multivariate Gaus-

sian prior on the weights of a neural network admits a valid posterior distribution, it

is not clear how the parameters of such a prior can reasonably incorporate our prior

beliefs about the data generating mechanism.

Nonparametric posterior learning (NPL, Lyddon et al., 2018) has been pro-

posed as an alternative to classical Bayesian inference. Rather than place priors on

2Reproduced from the paper.
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the parameter space, NPL specifies generative distributions on the space of data-

generating mechanisms. In effect, we have something like a “prior” on the space of

observations—a domain where we are likely to have prior knowledge. Inference pro-

ceeds by generating samples from this distribution over distributions, and then deter-

ministically optimizing a function of that distribution. While conceptually straight-

forward and trivially parallelizable, this can be costly if each optimization is com-

putationally demanding. For example, while NPL has been applied to small neural

networks (Fong et al., 2019), this involves training a new neural network for each

sample from the nonparametric posterior. This is likely infeasible in practice.

Instead, we propose an approximate NPL algorithm that partitions the nor-

malizing flow into a shared neural network (trained once, and used for unlimited

posterior samples) and sample-specific latent distributions hµ(z) (which have an an-

alytically tractable form and so can be easily calculated for a new posterior sample).

This allows us to generate high-quality approximate nonparametric posterior samples

from normalizing flows. We show that the resulting posterior distributions can achieve

better generalization performance than flows trained with maximum likelihood, and

that they can easily incorporate application-specific prior knowledge.

4.2 Background

4.2.1 Normalizing Flows

Normalizing flows (Tabak and Turner, 2013) are a family of generative models

useful for unsupervised learning. They use an existing (potentially simple) latent

distribution h and apply a change of variables to construct a new (usually more

complicated) distribution pX :

U ∼ h x = g(u)

where h is the distribution of the latent variable, and g is a bijective and differentiable

function that maps the latent variable U ∈ Rd to the variable of interest X ∈ Rd. If
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we are interested in the density of X, we can obtain it using a change of variables:

pX(x) = h(g−1(x))

∣∣∣∣det dg−1(X)

dX

∣∣∣∣
X=x

. (4.1)

While some common traditional distributions fit this framework (e.g., the uni-

variate log-normal distribution arises from taking h = N(0, 1) and g(u) = exp(µ+σu)

with parameters µ and σ), the typical emphasis in the normalizing flow framework

is constructing highly flexible transformations (or “flows”) gθ with parameters θ—

usually involving the composition of many transformations—while making efforts

to keep such transformations (and the Jacobian) analytically and computationally

tractable. Given samples X = {x1, . . . , xn}, the flow parameters θ can be estimated,

for example, by maximum (log-)likelihood estimation using Equation 4.1:

θ∗ = argmax
θ

1

n

n∑
i=1

log
(
h(g−1θ (xi))

)
+ log

∣∣∣∣det dg−1θ (X)

dX

∣∣∣∣
X=xi

.

Additionally, generating samples from the flow model is straightforward: sample from

the latent distribution U ′ ∼ h and apply the flow transformation x′ = gθ(u
′). We can

also evaluate the density of an observation x using the change-of-variables in Equation

4.1.

4.2.2 Nonparametric Learning

In the presence of only a small sample, maximum likelihood estimation will

struggle to capture the uncertainty in the true data generating distribution. To

better quantify that uncertainty, we can turn to a nonparametric learning approach.

Nonparametric learning (NPL, Lyddon et al., 2018; Fong et al., 2019) is an inference

scheme, inspired by Bayesian inference, with several key differences. Consider a

sample y1:n
iid∼ F0, and a parametric family of distributions FΘ = {fθ(y); θ ∈ Θ}

indexed by parameter θ ∈ Θ ∈ Rp, as in Fong et al. (2019). The Bayesian approach

assumes that our true data generating distribution is contained within the family of

the Bayesian posterior (F0 ∈ FΘ), which may not be reasonable. NPL does not make
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this assumption, instead allowing for model misspecification. In particular, NPL

considers a loss function ℓ(y, θ) (for example, the negative log-likelihood), seeking to

estimate

θ0(F0) = argmin
θ

∫
ℓ(y, θ)dF0(y).

If ℓ(y, θ) is the negative log-likelihood associated with a model fθ, θ0 is the value of

θ that minimizes KL(f0∥fθ). In the Fong et al. (2019) framework, we then place a

Dirichlet process prior on F0, F ∼ DP(α, Fπ), where α is the concentration parameter

and Fπ is the base measure by which we will incorporate prior knowledge about the

sampling distribution. The base measure Fπ may take the form of some known

density, for example, the form of the marginal likelihood of a related model fπ(y) =∫
fθ(y)dπ(θ), or may even be the empirical distribution of some historical data ŷ1:n̂

as Fπ(y) = 1
n̂

∑n̂
i=1 δŷi(y). In the case of α = 0, and a negative log-likelihood loss

function, the method corresponds to the Weighted Likelihood Bootstrap (Newton

and Raftery, 1994) and the Bayesian bootstrap (Rubin, 1981). Furthermore, we can

obtain approximate samples from the nonparametric posterior through the posterior

bootstrap by using a finite approximation to the Dirichlet process as discussed in

2.1.3 (Algorithm 2, from Fong et al. (2019)).

Algorithm 2 Posterior bootstrap sampling

Require: Observations y1, . . . , yn, base measure Fπ, number of samples B, concen-
tration parameter α
for b = 1, . . . , B do

Sample m pseudo-observations y∗1, . . . , y
∗
m

iid∼ Fπ

Sample weights W := (w1, · · · , wn, w
∗
1, · · · , w∗m) ∼ Dirichlet

(
1, · · · , 1, α

m
, · · · , α

m

)
F (b) =

∑n
i=1wiδyi +

∑m
i=1w

∗
i δy∗i

θ(b) = argminθ

∑n
i=1wiℓ(yi, θ) +

∑m
i=1w

∗
i ℓ(y

∗
i , θ)

end for
return {θ(b)}Bb=1
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4.3 Methods

We seek to use NPL with normalizing flow models for density estimation, al-

lowing us to incorporate prior knowledge in data space and quantify uncertainty using

the NPL posterior. However, as Algorithm 2 indicates, a näıve implementation would

involve performing the minimization of the normalizing flow’s negative log-likelihood

ℓNLL(y, θ) over the flow parameters θ for each of the B samples. This is computa-

tionally intractable and in practice led to unstable estimates as each individual flow

tended to overfit to a small number of (pseudo-)observations with high probability

mass.

Instead, we consider a modification to NPL, where the parameter of interest

can be split into a set of shared global model parameters ϕ and a set of local latent

parameters θ. In particular, we focus on a setting where ϕ is computationally ex-

pensive to optimize and θ is optimized quickly given ϕ. We will jointly optimize the

shared parameters ϕ by taking repeated bootstrapped samples of F (b) as in Algorithm

2, considering ϕ as fixed, then optimizing θ, and finally taking a gradient descent step

for ϕ. As such, we require running such a process until ϕ is converged, after which

the value of ϕ is fixed and we may sample the posterior of θ as before. This procedure

is outlined in Algorithm 3, providing a point estimate of ϕ and approximate samples

of θ.

In our normalizing flow setting, we will replace the fixed latent distribution

with one parameterized by θ, and assume shared flow parameters ϕ. Our experiments

use a latent Gaussian distribution with mean µ and identity covariance, such that

θ = µ. In this case, the maximum likelihood estimate required to sample θ(b) is simply

given by the weighted mean of the preimage of the augmented observations:

µ(b) =
n∑

i=1

wig
−1
ϕ̂
(yi) +

m∑
i=1

w∗i g
−1
ϕ̂
(y∗i ).

For a latent normal distribution with covariance matrix Σ, we can similarly arrive at

a simple closed-form expression, although in practice this seemed to yield numerical
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Algorithm 3 Posterior Bootstrap with Shared Parameters

Require: Observations y1, . . . , yn, base measure Fπ, initial shared parameter value
ϕ0, number of samples B, concentration parameter α, learning rate τ
ϕ← ϕ0

while not converged do
Sample m pseudo-observations y∗1, . . . , y

∗
m ∼ Fπ

Sample weights W := (w1, · · · , wn, w
∗
1, · · · , w∗m) ∼ Dir

(
1, · · · , 1, α

m
, · · · , α

m

)
F̃ =

∑n
i=1 wiδyi +

∑m
i=1w

∗
i δy∗i

θ = argminθ

∫
ℓ(y, ϕ, θ)dF̃ (y)

ϕ← ϕ+ τ∇ (
∑n

i=1wiℓ(yi, ϕ, θ) +
∑m

i=1 w
∗
i ℓ(y

∗
i , ϕ, θ))

end while
ϕ̂← ϕ
for b = 1, . . . , B do
Sample m pseudo-observations y∗1, . . . , y

∗
m ∼ Fπ

Sample weights W := (w1, · · · , wn, w
∗
1, · · · , w∗m) ∼ Dir

(
1, · · · , 1, α

m
, · · · , α

m

)
F (b) =

∑n
i=1wiδyi +

∑m
i=1w

∗
i δy∗i

θ(b) = argminθ

∫
ℓ(y, ϕ̂, θ)dF (b)(y)

end for
return {θ(b)}Bb=1, ϕ̂

instabilities due to outliers with large weights distorting the estimates of the latent

distribution parameters.

This augmented normalizing flow model dovetails with Algorithm 3. The

optimization step required for each bootstrap sample is reduced to a closed-form

function of the preimage. Furthermore, additional samples from the nonparametric

posterior can be obtained in a straightforward way, without the computational cost

of learning additional flows. We compare the performance of our approach with the

näıve NPL implementation in §4.5.4.
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4.4 Related Work3

This paper considers the nonparametric posterior distribution over a normal-

izing flow as a way of incorporating prior information and capturing epistemic uncer-

tainty. In the broader context of neural networks, a number of alternative approaches

have been proposed to either capture epistemic uncertainty, or to incorporate prior

information; however these approaches have mostly not been used with normalizing

flows.

Several works have applied a classical Bayesian approach to learning neural

networks, placing priors on the weights and updating them using Laplace approxima-

tions (MacKay, 1992a; Daxberger et al., 2021), variational inference (Graves, 2011;

Blundell et al., 2015), or assumed density filtering (Hernández-Lobato and Adams,

2015). Of particular relevance to this paper, Trippe and Turner (2018) use a vari-

ational inference approach to learn conditional normalizing flows. However, these

Bayesian methods tend to be slower than non-Bayesian approaches and do not al-

low us to easily incorporate domain knowledge. Gal and Ghahramani (2016) showed

that Monte Carlo dropout can be interpreted as approximate Bayesian inference in

a neural network, providing a lightweight alternative to the aforementioned Bayesian

approaches; however, again, we cannot incorporate domain-specific knowledge and

have minimal ability to adjust the priors on the weights.

Other works have employed bootstrapping approaches to capture uncertainty

in neural networks. Franke and Neumann (2000) show consistency of the frequentist

bootstrap for neural networks. Schulam and Saria (2019) use influence functions to

estimate how the predictions of a neural network would have changed if it were trained

on a bootstrapped version of the original dataset; however, this is computationally

costly due to the need to compute the Hessian matrix. In an attempt to reduce the

cost of frequentist bootstrap approaches, several papers have aimed to approximate

3Reproduced from the paper.
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the bootstrapping procedure. In the context of reinforcement learning, Osband et al.

(2016) reduces the computational complexity of bootstrapping by partitioning the

architecture into a shared neural network (updated by all bootstrapped samples),

and local “heads” that branch off this shared neural network and are only updated

based on a single bootstrap sample. Based on a similar partition, Shin et al. (2021)

multiplicatively incorporates bootstrap weights in the final layer of a neural network,

learning a shared base network that can be combined with new weights. These par-

titioning approaches have some of the flavor of the partitioning used in this paper,

however, the architectures they assume do not naturally translate to normalizing

flows.

Less attention has been given to incorporating meaningful prior information

while training neural networks. In Osband et al. (2018), the authors show that, in

the case of a linear model, we can sample from the Bayesian posterior by solving

an optimization problem using perturbed data samples, and a random regularization

term. While the direct link to a Bayesian posterior does not hold in the non-linear

case, they make use of this intuition to incorporate the idea to obtain approximate

posterior samples in a neural-network-based reinforcement learning model. The ob-

servations are perturbed—either by adding Gaussian noise, or by taking a bootstrap

sample—and a sample from some prior distributions over functions is incorporated

as a regularizer. While the mechanism for incorporating a prior is different from that

proposed in this paper, it shares the fact that the “prior” is specified in the function

space, rather than the parameter space.

4.5 Evaluation

We have developed a framework to incorporate prior information in a nor-

malizing flow model, which we expect can improve posterior uncertainty estimates,

particularly in the small data regime. However, our approximate NPL method intro-

duced an additional optimization step for jointly learned shared parameters, which
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could (in principle) inhibit the learning of the flow’s parameters as compared to the

näıve NPL or maximum likelihood approaches. We investigate our proposed method

first with a qualitative exploration of the behavior in a simple simulation study. Then,

we apply our method to a set of datasets following Papamakarios et al. (2017). Finally,

we present a short comparison between our method using shared flow parameters and

the näıve NPL implementation.

4.5.1 Implementation Details

Using what we learned from some initial exploration of the Gas dataset (see

§B), we determined some hyperparameters related to network depth and structure

to best explore how our model compares against a baseline flow. We also considered

an initialization scheme where the flow was first trained to the identity function

to prevent numerical issues but abandoned this effort as it seemed not to improve

performance. Additionally, we discovered that a full-covariance latent distribution

tended to be numerically unstable, so we focused on a latent Gaussian distribution

with identity covariance. More details available in §B.

In particular, the following experiments incorporated:

• A 3 block masked autoregressive flow (Papamakarios et al., 2017), including

batch normalization layers, with a multivariate normal base distribution.

• Five random initializations, selecting the best model based on validation set

average log-likelihood.

• For convergence, we applied early stopping when validation set average log-

likelihood did not improve for 30 epochs (maximum number of epochs in practice

was 5478).

• A standard normal distribution as the base distribution for the baseline com-

parison, and a multivariate normal with learned mean for the WLB and NPL

runs.
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• A subset of the training data (N ∈ {500, 1000, 5000, 10000}) to explore the

small data regime where we would expect the robustness of the WLB or NPL

approaches to assist the model.

• Two priors with concentration α = 100 for the NPL approach. One used the

mean and covariance of the training data subset to inform a multivariate nor-

mal prior distribution. One used additional training data (outside the selected

subset) as pseudo-observations, essentially mimicking using historical data in a

best-case scenario.

• We report the average log-likelihood of the test set, ℓtest. In the WLB and

NPL cases, we use 100 samples of Dirichlet weights and pseudo-observations

to determine the base distribution and report the average ℓtest from those 100

samples.

4.5.2 Qualitative Evaluation on Synthetic Data

To explore the performance and behavior of our approach, we first consider

an example of two-dimensional synthetic data. We applied our method to a simple

Gaussian mixture model with two equal-weight components in two dimensions, seek-

ing to explore how different base distributions Fπ and concentration parameters α

impact the nonparametric posterior (see Figure 4.1). We expect that a larger con-

centration α will cause the posterior to be pulled toward Fπ. And indeed, for α = 0,

we observe that the samples remain similar to those of the original flow trained with

maximum-likelihood estimation. At α = 1, we observe subtle differences, and at

α = 100 (effectively giving the prior equal weight to the 100 observations), we see

the posterior samples clearly reflecting the prior. Additionally, we clearly observe the

effect of different base distributions Fπ at this high concentration, with the samples

from the model with the higher-variance prior being more spread out.
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Figure 4.1: Samples (blue) from MAF model trained on N = 100 data points (black),
in the original MAF model, and in the posterior normalizing flow version with α ∈
{0, 1, 100} and two spherical Gaussian priors centered at (0, 0)⊤.
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4.5.3 Quantitative Experiments on Real Datasets

We sought to determine how our method compares against a maximum like-

lihood approach by varying the size of the training subset. Additionally, for our

method, we explored a version that did not incorporate pseudo-observations (α = 0,

corresponding to a weighted likelihood bootstrap version of our method), and com-

pared two using two “prior” base distributions: an empirical distribution derived from

additional observations from outside the training subset (effectively giving our model

more training data, representing a best-case scenario) and a multivariate Gaussian

with mean and covariance determined by the training subset.

Following Papamakarios et al. (2017), we present results on several UCI datasets,

along with the BSDS300 dataset, with sizes shown in Table 4.1. Our test set log-

likelihood results are shown in Figure 4.2.

BSDS300 Gas HEPMASS MiniBooNE Power

Ntrain 1000000 852174 315123 29556 1659917
Nval 50000 94685 35013 3284 184435
Ntest 250000 105206 174987 3648 204928
D 63 8 21 43 6

Table 4.1: Properties of datasets used in experiments, following Papamakarios et al.
(2017).

Overall, our method tends to attain a higher average test-set log-likelihood

than the maximum-likelihood approach when fewer observations are used in train-

ing. In particular, even using a Gaussian base distribution often appears helpful,

indicating that our method is able to reduce overfitting, even when essentially no

new information is provided. We do observe that the α = 0 case does tend to result

in instabilities. We suspect this is due to its tendency to overfit to a small num-

ber of observations with high probability mass due to the Dirichlet weights. We do

tend to observe that as N increases in each dataset, all four methods tend to im-

prove in overall test set log-likelihood (with some exceptions). Furthermore, we do
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Figure 4.2: Results on datasets, with covariate dimension increasing
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observe that for larger training subsets N ∈ {5000, 10000}, we occasionally see our

method underperforming the baseline. We suspect that for some datasets, the effect

of the Dirichlet weights will under-weight enough training datapoints that the NPL-

based methods are less able to capture aleatoric (data) uncertainty compared to the

maximum-likelihood approach.

4.5.4 Comparison with Näıve NPL Approach

As discussed in §4.3, a näıve nonparametric learning approach to normalizing

flows would learn all model parameters locally (rather than splitting into the jointly-

learned flow parameters ϕ and local latent distribution parameters θ), which, as

discussed, will usually be computationally prohibitive. However, as an exploration,

we applied this method to the MiniBooNE dataset with N = 1000 training examples.

We learned 100 models under the NPL framework with α = 0 (corresponding to the

WLB) and a standard normal base distribution, each of which was the best-of-five as

judged by validation set average log-likelihood, to try to compare fairly to the best-

of-five models learned using our method (which we employed to account for numerical

instabilities).

Results are in Table 4.2. The maximum likelihood and näıve WLB implemen-

tations both have a standard Gaussian latent distribution. The three versions of our

method learn the mean of a multivariate Gaussian latent distribution (θ = {µ}). In

this limited exploration, we observe an improved test log-likelihood when using our

method, likely as a result of learning the flow parameters globally, which acts as a sort

of regularization in the WLB setting compared to the näıve implementation or the

maximum likelihood method. In fact, not only does the empirical base distribution

result in a better test log-likelihood (as expected for what amounts to an additional

set of training points), but even the Gaussian base distribution based on the training

subset improves the test log-likelihood, indicating that the additional less-informative

pseudo-observations still help any model instabilities.
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Method Average Test LL

Maximum Likelihood, µ = 0 −28.441± 0.405
Näıve WLB, µ = 0 −31.975± 0.453
Ours, WLB, θ = µ −25.234± 0.438
Ours, NPL α = 100 (Gaussian), θ = µ −23.671± 0.327
Ours, NPL α = 100 (Empirical), θ = µ −22.188± 0.278

Table 4.2: Comparison of standard NPL approach to our version on the MiniBooNE
dataset (N = 1000).

4.6 Discussion and Future Work

The masked autoregressive flow (MAF, Papamakarios et al., 2017) may not

be the ideal choice of flow for these datasets, so one potential area of exploration

is using other flow models, particularly those more relevant to particular datasets.

MAF is ideal for datasets where each example’s covariates relate to one another

in an autoregressive way (e.g., time series) and the UCI datasets investigated (Gas,

HEPMASS, MiniBooNE, Power) do not seem to be structured in this way (although in

some cases, each example is itself part of a time series but treated as i.i.d.). Examples

of the BSDS300 are derived from natural image patches, which may benefit from the

autoregressive treatment in MAF. Other choices of flows are explored further as joint

work in Ott and Williamson (2022a).

Here, we presented two plausible priors, but we believe the nonparametric

posterior normalizing flow would be best suited to a problem with historical data

or a related dataset. In particular, this does present an interesting framework for

an analogue of inductive transfer learning, using the empirical distribution of e.g., a

large heterogeneous dataset as a prior, with a smaller homogenous dataset being the

dataset of interest. We hope to explore such problems in future work.
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Chapter 5: Edge-Based Generative Graph Neural

Networks1

Abstract

Graph neural networks (GNNs, Scarselli et al., 2008) are neural

network-based models for graph-structured data. Recent work in

generative GNN models allows for generating novel graphs similar

to those from a given data-generating distribution. However, ex-

isting approaches to GNNs tend to generate graph sequences that

are dense, while many real-world graph sequences are sparse. Build-

ing on recent work on edge-exchangeable graph models (Crane and

Dempsey, 2016; Cai et al., 2016) that produce sparse graph se-

quences, we propose an edge-based generative GNN model for sparse

graphs.

5.1 Introduction

Graphs are structures that express relational information. Many types of data

can be expressed using graphs, like molecules, social networks, or email interactions.

Sampling graphs from a distribution can be useful in problems like drug discovery,

where molecules are modeled using graphs and we seek to sample novel molecules

(Gómez-Bombarelli et al., 2018; Li et al., 2018b). Similarly, problems in neural ar-

chitecture search (Xie et al., 2019) or in network science generally may find use of

generating novel graphs from a distribution, potentially learned from graphs in a

1This presents work that is part of an ongoing collaboration myself, Curtis Carter, Elahe Ghalebi,
and Sinead Williamson. The work contained in this chapter represents my contribution to this
collaboration.

58



particular domain.

Graph neural networks (GNNs Scarselli et al., 2008) and graph convolutional

networks (GCNs Welling and Kipf, 2016) are neural network-based approaches to

modeling graphs, creating latent representations of nodes known as node “embed-

dings.” These node embeddings provide a graph-informed representation of the node

useful for a variety of problems, including node classification, graph classification, or

link prediction. Recent work on generative GNN models extends the GNN paradigm

to learn a distribution over graphs, generating graphs from that distribution (Si-

monovsky and Komodakis, 2018; You et al., 2018; Liao et al., 2019; Li et al., 2018b).

Whereas most generative GNN models have not focused on the theoretical

properties (e.g., sparsity, degree distribution, clustering coefficients) of the distribu-

tions they learn, the properties of non-GNN-based probabilistic models of graphs are

an active and developed area of research. For example, random vertex-exchangeable

simple graphs (that is, undirected, without self-loops) can be parameterized by a ran-

dom graphon, which are provably dense (or empty) almost surely (Orbanz and Roy,

2014). Kronecker graphs generate graphs that are self-similar. Barabási-Albert (BA,

Barabási and Albert, 1999) graphs have a power law degree distribution. Sparse

exchangeable graphs based on Poisson processes (Caron and Fox, 2017) and and

edge-exchangeable graphs based on nonparametric distributions (Crane and Dempsey,

2016; Cai et al., 2016) generate sparse graph sequences.

Departing from existing generative GNN models that generate graphs in a

manner similar to vertex-exchangeable methods, we explore how edge-exchangeable

graphs can be incorporated in a generative GNN setting, allowing us to capture

graph sparsity, which we observe in many real-world graphs. We begin with further

background on probabilistic graph models and generative GNN models, then present

our method and experiments, including qualitative and quantitative results.
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5.2 Background

We begin by reviewing existing models for random graphs and graph neural

networks.

5.2.1 Models for Random Graphs

Graphs from real-world problems can be described by a variety of graph statis-

tics. Some of these include graph’s sparsity, degree distribution, local clustering

coefficient distribution, and Laplacian spectrum distribution (see §C.3.1 for a brief

introduction to these statistics). As such, various models for graphs have been pro-

posed, attempting to replicate observed behavior. Of these, many interesting models

are vertex-exchangeable models.

Vertex-exchangeable models (Aldous, 1981; Hoover, 1979) of graphs assign

equal probability to two graphs if they are the same up to a permutation of the

vertices. Said another way, the model is invariant to jointly permuting the rows

and columns of a graph’s adjacency matrix. The Erdős-Renyi model (Erdős et al.,

1960) is vertex-exchangeable: given a number of nodes n and edge probability p,

each possible edge in the network is realized with probability p. The stochastic block

model (Holland et al., 1983) expands on this idea, with each node being assigned to

a cluster, and edge probabilities within- and between-clusters as model parameters.

While every graph has a particular density (|E|/(|V |(|V | − 1)) for simple

graphs), if we have a sequence of graphs (Gn)n, we can consider whether the graph

sequence is dense or sparse as n→∞, by comparing the rates of growth of |Vn| and

|En|, the number of nodes and number of edges in graph Gn. A sequence is dense if

|En| = Ω(|Vn|2) and sparse if |En| = o(|Vn|2) (Cai et al., 2016). Existing work has

shown that many real-world graphs tend to grow in a sparse way. For example, in

many social networks, the number of edges associated with a new user is subquadratic

in the number of users—most users are not connected to most users. However, un-

der the Aldous-Hoover theorem (Aldous, 1981; Hoover, 1979), it can be shown that
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vertex-exchangeable approaches yield dense (or empty) graph sequences. Thus, graph

models that use a vertex-exchangeable approach are misspecified for many real-world

graph problems.

Instead, we can consider models that produce sparse graphs. For example,

Barabási-Albert (BA, Barabási and Albert, 1999) graphs are preferential attachment

models that grow the graph by adding each new node along with connections to m

existing nodes, with the likelihood of attachment being proportional to the degree of

the existing node. As a result, BA graph sequences are sparse, with a power-law degree

distribution. More relevant to our approach are edge-exchangeable graphs (Crane and

Dempsey, 2016; Cai et al., 2016), which consider graphs to have equal probability if

they are the same up to a permutation of the edges. Edge-exchangeable graphs have

been shown to produce sparse graph sequences (under some conditions, including

having a sufficiently large probability of selecting a new node as the number of edges

grows). Furthermore, of interest are other edge-based approaches to graphs, inspired

by edge-exchangeable models, like the dynamic nonparametric network distribution

(DNND, Ghalebi et al., 2019), that are able to capture additional structure and

dynamics of graph sequences, while still producing sparse graph sequences.

5.2.2 Graph Neural Networks

Graph neural networks (GNNs, Scarselli et al., 2008) are a neural network-

based approach to problems involving graph-structured data. As discussed in §2.2.1,

they often involve constructing an embedding for each node, often involving a message-

passing scheme. The original GNN approach develops node embeddings xv by con-

structing messages (combining any node or edge covariates ℓu and ℓ(v,u) and any

current node embeddings) from node u to node v using a learnable function hw,

aggregating them over the neighborhood of node v:

xv =
∑

u∈N(v)

hw(ℓv, ℓ(v,u), xu, ℓu), v ∈ V.
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This procedure can be iterated (to a fixed-point solution in the construction above)

with the final node embeddings used in problems such as node classification or link

prediction, or aggregated to form a graph embedding for problems like graph classi-

fication.

The original GNN approach has been extended in many ways, including gen-

erative GNN models (e.g., Kipf and Welling (2016); Li et al. (2018b); You et al.

(2018); Grover et al. (2019); Liao et al. (2019)). We review in detail the GraphRNN

(You et al., 2018) and DeepGMG (Li et al., 2018b) models in §2.2.1.1. DeepGMG

constructs simple graphs in a node-based way, similar to the process used in prefer-

ential attachment graphs like BA graphs. DeepGMG determines whether to add a

new node based on the current graph embedding (an aggregated projection of the

current node embeddings). If a new node v∗ is added to the graph, edges are sampled

between v∗ and existing nodes based on the node embeddings. As a generative model,

DeepGMG is able to learn a process to generate new graphs similar to those in an

existing dataset.

GraphRNN (You et al., 2018) also formulates the graph generation process in

a node-based way for simple graphs. GraphRNN considers the sequence of adjacency

vectors that comprise the adjacency matrix and maintains a graph embedding using

an RNN (for a brief introduction on RNNs, see §C.5). As each new node is added to

the graph, its edges to existing nodes are added probabilistically based on the graph

embedding (either independently or dependently using an RNN by considering each

existing node in turn). Again, novel graphs can be generated that are similar to those

of an existing dataset.

Variational graph auto-encoders (VGAEs, Kipf and Welling, 2016) are an al-

ternate method of using GNN-inspired models in a generative setting. VGAE uses

a graph convolutional network as an encoder to construct the mean and variance of

a per-node variational Gaussian latent distribution. Samples from the latent distri-

bution are then applied to a simple inner product model (that could in principle be
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replaced with a neural network) that provides a distribution on adjacency matrices.

From this construction, VGAE can be trained on a graph, yielding the variational

posterior latent distribution, which can then be used to sample missing edges of the

graph or potentially to generate novel but similar graphs.

In general, the existing generative GNN models essentially focus on sampling

whether an edge is present or absent, constructing the adjacency matrix. This con-

struction is similar to graphon-based methods (which correspond to vertex-exchangeable

graph sequences), where elements of the adjacency matrix are sampled from some dis-

tribution. While the theoretical properties of the distributions induced on graphs by

these models have not been thoroughly explored, we do know that vertex-exchangeable

models cannot produce sparse graph sequences. Instead, we seek to explore an edge-

based generative GNN model, expecting that we will better be able to model sparse

graphs, which are relevant to many real-world graphs.

5.3 Method

Approaches like edge-exchangeable graph sequences are provably capable of

generating sparse graphs. While generative graph neural network-based approaches

offer far more flexibility in modelling, they have not focused on producing graphs

that are sparse. We aim to combine these two areas of work, creating a GNN-based

generative model that can generate sparse graphs. In particular, we seek to combine

the structure of representation used in generative GNNs like DeepGMG (Li et al.,

2018b) with the edge-based methods capable of producing sparse graphs such as Cai

et al. (2016); Crane and Dempsey (2016); Ghalebi et al. (2019).

Much like edge-exchangeable models discussed in §5.2, our method generates

graphs edge-by-edge. We will form a distribution over graphs constructed from a

sequence of (an unbounded number of) edges. As such, graphs generated by our

model will be able to grow over time, in a manner similar to many real-world settings

such as social media or interaction graphs. Of course, similar to edge-exchangeable
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approaches, we can specify a finite number of edges to consider and construct the

relevant graph.

Our method constructs and iteratively updates embeddings for each node,

which are projected and aggregated into an overall graph embedding, using these

embeddings to inform the choice of the nodes that appear in the next edge. While

we will treat edges as undirected for the purpose of message passing, we will sample

the edges (u, v) as ordered pairs, calling node u the “sender” and v the “recipient.”

We sample the nodes in each edge sequentially, selecting the node according to a

K + 1-dimensional probability vector, where K is the number of previously seen

nodes (including the sender if we are selecting the recipient). As an important note,

graphs constructed with our method need not be simple; repeated edges and self-loops

are permissible in our model.

The probability of selecting a particular node depends on the node (and graph)

embeddings. When sampling the sender for the new edge (based on the current state

of the graph), this takes the form

p(S = v) ∝

{
fsender(hv; θ) v ∈ Vn,

fnew sender(hG; θ) v = |Vn|+ 1,
(5.1)

where Vn are the nodes present in the graph after n edges, hv is the embedding of

node v, hG is the graph embedding (a gated sum of projections of node embeddings,

following Li et al. (2018b)), neural networks fsender and fnew sender, which depend on

learnable parameters θ (where we have simplified notation, treating θ as the set of all

parameters learned in the model). Similarly, when selecting the recipient, we have

p(R = v|S = s) ∝

{
frecipient(hv, hs; θ) v ∈ Vn ∪ {s},
fnew recipient(hG, hs; θ) v = |Vn ∪ {s}|+ 1.

(5.2)

When sampling either the sender or recipient, if a new node is selected, we initialize

its embedding based on the current graph state: hv = finit(hG, θ)
2.

2We also explored initial embeddings including hv ∼ U([0, 1]d) but found that the version based
on the current graph embedding worked best.
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A visual representation of this edge-based graph generation process is in Figure

5.1, where nodes and edges are both labeled and edges. In each of the 16 steps shown,

a new edge is added, which may or may not add a new node (or two new nodes) to

the graph.

After sampling a new edge (s, r), we update the node embeddings using mes-

sage passing. First, we construct messages from all nodes u to their neighboring nodes

v ∈ N(u) based on the current node embeddings:

mv←u = fmessage(hv, hu; θ). (5.3)

We will then update the node embeddings using an RNN that depends on the current

node embedding and an aggregation of the incoming messages mv to node v:

hv = fupdate(hv,mv; θ). (5.4)

When aggregating these messages, we explored two variations. For the first option,

we simply add the incoming messages over all edges in the current graph, treating

edges as undirected, but with repeated edges and self-loops allowed:

mno time
v =

∑
(u,v)∈Eundirected

mv←u. (5.5)

Secondly, we explored a time-aware variation. Here, every edge is additionally given

a timestamp (which is non-decreasing as we add additional edges), and we weight

messages sent over each edge by a function of how much time has elapsed since that

edge was added to the graph. After adding an edge at time t, we construct the weights

for each edge e that was added at time te and aggregate the messages as:

mtime
v (t) =

∑
u∈N(v)

 ∑
e=(u,v)∈Eundirected

ftime

(
1

t− te + 1
; θ

)mv←u. (5.6)

As such, we expect this time-aware version to more readily capture any temporal

dynamics in a particular graph distribution. The full learning algorithm is given in

Algorithm 4.
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Figure 5.1: Demonstration of how the graph is generated in an edge-based method
like ours or the BHP, with nodes and edges labeled.
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Algorithm 4 Edge-based generative graph neural network

Require: Graph edge lists E = [E(1), . . . , E(N)], graph edge timestamps T =
[T (1), . . . , T (N)]
while not converged do
for g = 1, . . . , N do
Initialize graph G = {V =, E =}
for t ∈ T (g) do
Select sender s according to Equation 5.1.
If the sender is a new node (s /∈ V ), initialize hs = finit(hG, θ).
Select sender r according to Equation 5.2.
If recipient is a new node (r /∈ V ∪ {s}, initialize hr = finit(hG, θ).
Add edge (s, r) to E at time t (and nodes s, r to V as appropriate).
Construct messages mv←u according to Equation 5.3.
Aggregate messages to form mv according to Equation 5.5 or 5.6.
Update node embeddings hv for all nodes according to Equation 5.4.

end for
θ ← θ +∇ℓ(E(g); θ).

end for
end while

5.3.1 Generating Sparse Graph Sequences

We now consider how our edge-based model can recover graph sparsity, which

is relevant in many real-world graph settings. We begin by considering the behav-

ior of edge-exchangeable graphs. Edge-exchangeable graphs construct a sequence of

edges by repeatedly sampling pairs of vertices from a distribution on the space of

edges. Typically, this distribution is of the form W ×W , where W is sampled from

a nonparametric distribution. If this distribution has heavy tails – such that the

probability of an edge introducing a previously-unseen vertex is sufficiently large –

the resulting graph is sparse. In particular, a normalized generalized gamma process

(Cai et al., 2016) or a Pitman-Yor process (Crane and Dempsey, 2016) is capable

of generating sparse graphs (see (Cai et al., 2016) for more details on the technical

conditions).

Our graph generative model constructs distributions over edges, where there

is always a finite probability of seeing new nodes. This implies that the model can
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capture the behavior of a (dynamically evolving) nonparametric distribution, where

the number of nodes is unbounded as the graph grows. While this distribution is not

inherently heavy-tailed, it can capture heavy-tailed behavior.

As a simple example of capturing heavy-tailed behavior, consider the “binary

Hollywood process (BHP),” a Pitman-Yor-based graph of Crane and Dempsey (2016).

The BHP produces edge-exchangeable graph sequences (Crane and Dempsey, 2016,

Theorem 5.1) with preferential attachment. BHP samples edges En, first selecting a

sender En,1, then the recipient En,2, creating a graph Gn = Gn−1 ∪En. Based on the

most recent graph Gn−1, BHP selects the new node based on:

P (En,j = i|E<n,1:2, En,<j) ∝

{
Dn,j(i)− σ, i = 1, . . . , Nn,j

α + σNn,j, i = Nn,j + 1
, j = 1, 2, (5.7)

Nn,j =
∣∣Vn ∪ {En,k}j−1k=1

∣∣
where Nn,j is the number of nodes in the current graph (including the sender En,1 if

j = 2) and Dn,j(i) is the number of times node i has been seen (again, counting the

sender if j = 2). In the case of 0 < σ < 1 and α > −σ, which represents an infinite

population of available nodes (such that limn→∞ |Vn| → ∞ almost surely), the graph

sequence will be sparse (whether sparsity is measured for the multigraph or the graph

projected to exclude repeated edges, see Crane and Dempsey (2016), Theorem 5.3

and 5.4).

Our model can recover this distribution if the node embeddings capture the

degree of that node (minus a constant), and the overall graph embedding captures

the number of observed vertices (minus a constant). Both of these embeddings are

achievable via a GNN, implying that our model has the ability to model graph sparsity.

More generally, we expect to have sparse graphs provided the probability of seeing a

new node is at least α+|Vn|σ
2n+α

for some 0 < σ ≤ 1.
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5.4 Evaluation

In this work, we focus on the task of generating graphs similar to those in

a dataset of interest. First, we demonstrate the ability of our model to capture

graph sparsity. Next, we compare our model with deep generative models of graphs

(DeepGMG, Li et al., 2018b), a node-based generative GNN model, by assessing

performance on a number of synthetic and real training datasets, described below.

5.4.1 Qualitative Exploration

As discussed in §5.3.1, we discussed how our approach has the capacity to

model sparse graphs, using the Pitman-Yor-based binary Hollywood process (BHP)

graphs of Crane and Dempsey (2016) as an example. Here, we demonstrate this

capacity empirically. We trained our model on 500 BHP graphs with number of

edges selected uniformly at random from 50 to 500, using an additional 100 graphs

for validation and 100 for testing (here, used only for visualization). We used BHP

parameters α = 1 and σ = 0.7, which represent a distribution over sparse graphs with

an infinite population of available nodes. Figure 5.2 includes an example BHP graph

from the test set.

First, we consider the probability distribution for the ith sender, conditioned

on the previous i−1 edges of the graph. Figure 5.2 shows the true probabilities under

the BHP model and the probabilities recovered under our model. We observe that

our model is able to capture the behavior of the generating distribution.

Next, we explore whether we recover sparsity when sampling novel graphs,

using the model trained on BHP graphs. Figure 5.3 show the number of nodes

in graphs generated using the BHP and graphs generated using our model as we

increase the number of edges. We observe that graphs generated by our model are in

fact slightly sparser than those generated by the BHP (with more nodes for a fixed

number of edges), however the two distributions overlap, and remain close to the
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Figure 5.2: Top, a BHP graph from the test set. Left, ground truth sender probabil-
ities under the BHP model. Right, Predicted sender probabilities within our model.
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Figure 5.3: Expected and empirical node growth for binary Hollywood process graph
sequences and generated graph sequences.
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expected number of vertices in BHP graphs (see Crane and Dempsey (2016)):

E(|Vn|) ∼
Γ(σ + 1)

σΓ(σ + α)
(2n)σ. (5.8)

Thus, our model is empirically able to generate sparse graphs, validating the intuition

of §5.3.1.

5.4.2 Datasets

We evaluated our method on several synthetic graph generation models, specif-

ically, cycle graphs, ladder graphs, Barabási-Albert graphs, and dynamic nonpara-

metric network distribution (DNND, Ghalebi et al., 2019) graphs. In all cases, we

generated 900 graphs for training, 100 for validating, and 100 for testing.

For the cycle, ladder, and Barabási-Albert graphs, we generated graphs with 10

to 40 nodes (selecting the number of nodes uniformly at random, with only even-sized

ladder graphs). Barabási-Albert graphs were generated with an initial seed graph of

4 unconnected nodes, with each new node connecting to 4 unique nodes selected

from the previously-generated nodes by preferential attachment (with probability of

selection being proportional to node’s degree). Cycle, ladder, and Barabási-Albert

graphs were all generated using NetworkX (Hagberg et al., 2008).

DNND graphs are an extension to the edge-exchangeable models discussed

that incorporates clustering and temporal dynamics, while maintaining sparsity. In

our experiments, DNND graphs were all generated with 200 edges, allowing self-loops

and duplicate edges, with parameters α = 1, γ = 1, τ = 0.2, σ = 0.7 and a node decay

window of 20 edges and no cluster decay, see Ghalebi et al. (2019).

We also used several real-world temporal datasets from TUDataset (Morris

et al., 2020), specifically a subset of the datasets used in Oettershagen et al. (2020).

In particular, we used the DBLP, Facebook, Highschool, Infectious, MIT, and Tumblr

datasets.
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Dataset Graphs Average Nodes Average Edges Average Repeated Edges

Synthetic
BA 1000 24.98 83.91 0
Cycles 1000 24.98 24.98 0
DNND 1000 18.44 200 180.00
Ladders 1000 24.97 35.45 0

Real
DBLP 755 52.87 320.10 220.32
Facebook 995 95.72 269.02 167.30
Highschool 180 52.32 544.81 432.73
Infectious 200 50 459.72 333.74
MIT 97 20 1469.15 1432.55
Tumblr 373 53.11 199.79 128.16

Table 5.1: Properties of datasets used in our experiments.

A summary of synthetic and real dataset properties is in Table 5.1. For syn-

thetic datasets, we report the properties for the combined training and validation

subsets. For real-world datasets, we report the properties of combined training, vali-

dation and test subsets.

5.4.3 Implementation Details

In the quantitative experiments below, when generating new graphs, our method

selects a training graph at random and generates a new graph with the same times-

tamps and number of edges. In the time-aware version of our model, these are the

timestamps applied for constructing messages (see Equation 5.6). Furthermore, our

method requires an edge ordering, so when a natural ordering is not available (such as

for the Barabási-Albert graphs), we visit edges in a breadth-first search (BFS) start-

ing at a randomly selected node. This choice of edge ordering based on BFS mirrors

that of You et al. (2018) which constructs a node ordering based on BFS. The cycle

and ladder graphs employed a natural ordering of edges (traversing the cycle and

moving “up” the ladder, respectively), while DNND and the real-world datasets have

an explicit time ordering.
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To facilitate a direct comparison with our model, we modified the DeepGMG

model to produce graphs with a pre-determined number of nodes, rather than using its

prediction function of whether to continue adding nodes. For a fair comparison with

our method, graphs generated by DeepGMG were constructed to select a training

graph at random and generate a new graph with the same number of nodes.

For both methods, we use early stopping based on the validation set log-

likelihood not improving for 30 epochs, considering graphs generated with that best

set of model parameters.

5.4.4 Evaluation Metrics

To compare methods, we compute graph statistics for the generated graphs

and compare against a held-out test set of graphs. Specifically, we seek to compare

how well graphs generated from different methods match the test set in terms of

the degree distribution, the local clustering coefficient distribution, the Laplacian

spectrum distribution, and the graph density distribution (for background on these

statistics, see §C.3.1). For the first three graph statistics, we will make comparisons

using the maximum mean discrepancy (MMD, Gretton et al., 2012), a kernel-based

distributional distance (see §C.1).

To calculate the MMD, we will use kernels based on the total variation dis-

tance:

k(x, y;σ) = exp

(
−dTV(x, y)

2σ2

)
= exp

(
− 1

2σ2

1

2

d∑
i=1

|xi − yi|

)
,

with kernel parameters as suggested by O’Bray et al. (2021). In particular, for each

graph, we will compute histograms for the degree distribution, local clustering coef-

ficient distribution, and Laplacian spectrum distribution with the kernel’s scale and

histogram’s number of bins shown in Table 5.2.

For the graph density, we compute the Kolmogorov-Smirnov statistic, which

is the maximum absolute difference in the empirical CDFs of the density between the

generated graphs and test graphs.
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Graph Statistic σ Number of bins

Degree 1.0 Maximum degree of any graph
Local clustering coefficient 0.1 100
Laplacian spectrum 1.0 200

Table 5.2: Kernel and histogram parameters used in calculating MMD values for each
type of distribution.

5.4.5 Comparison with DeepGMG

We now turn to a quantitative comparison with DeepGMG – a generative

GNN that generates graphs node-by-node – to explore the advantage of an edge-

based representation. We will compare both versions of our model with DeepGMG:

the time-aware version that uses Equation 5.6 to construct messages (“time”), and the

un-weighted version that uses Equation 5.5 to construct messages (“no time”). Using

models trained as described in §5.4.3 we then generated novel graphs, and compared

these novel graphs to those of the test sets using the metrics described above.

For DeepGMG models, we generated 100 novel graphs. For our models, we

generated a number of novel graphs equal to the size of the training set. We repeated

the training process for 4 different random seeds for each combination of model and

training set unless otherwise noted. Finally, when computing the metrics discussed

above, we treat ground truth and generated graphs as simple, removing self-loops and

repeated edges.

Table 5.3 presents results on the synthetic datasets discussed above, comparing

graphs generated from each method with those in the test set. We observe that overall,

our method tends to produce graphs that are more similar to the test set than the

graphs generated by DeepGMG. In particular, our method appears to better replicate

the density. This matches the intuition developed in §5.3.1 and the empirical sparsity

results in §5.4.1.

For the synthetic datasets, we also visualize randomly-selected graphs gen-

erated from DeepGMG and our model, in comparison to randomly-selected ground
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Dataset + Metric Ours (time) Ours (no time) DeepGMG

BA n = 4 n = 6 n = 4
MMDdegree 0.35268± 0.00943 0.38978± 0.01611 0.22016± 0.01586
MMDcluster 0.10822± 0.00065 0.11020± 0.00117 0.14204± 0.00011
MMDspectral 0.19653± 0.00923 0.23202± 0.01701 0.21706± 0.00332
KSdensity 0.54475± 0.02572 0.67117± 0.02720 0.89250± 0.02161

Cycles n = 4 n = 6 n = 5
MMDdegree 0.08389± 0.00018 0.08350± 0.00025 0.12930± 0.01692
MMDcluster 0.00000± 0.00000 0.00531± 0.00232 0.18182± 0.06401
MMDspectral 0.14965± 0.00069 0.14872± 0.00146 0.29722± 0.00620
KSdensity 0.09850± 0.00043 0.09983± 0.00146 0.81000± 0.04195

DNND n = 4 n = 5 n = 4
MMDdegree 0.37253± 0.00360 0.33253± 0.01476 0.09297± 0.00482
MMDcluster 0.39874± 0.00749 0.39486± 0.00724 0.50634± 0.01349
MMDspectral 0.25171± 0.00781 0.22512± 0.01368 0.17333± 0.00211
KSdensity 0.50975± 0.04510 0.41720± 0.03059 0.99250± 0.00217

Ladders n = 4 n = 6 n = 5
MMDdegree 0.00397± 0.00043 0.00375± 0.00013 0.10733± 0.00009
MMDcluster 0.00000± 0.00000 0.00000± 0.00000 0.00143± 0.00128
MMDspectral 0.05223± 0.00027 0.05133± 0.00030 0.50509± 0.00086
KSdensity 0.08125± 0.00134 0.08033± 0.00122 0.96000± 0.00000

Table 5.3: Synthetic dataset results, showing the mean and standard error of each
metric on four trials unless otherwise noted.
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truth test graphs in Figure 5.4. Overall, we see that we are able to capture the

structure of each graph family (as does DeepGMG).

Table 5.4 presents results on the real-world datasets. We observe that, despite

the success observed on synthetic graph datasets, our approach seems not to outper-

form DeepGMG on real-world graphs3. We hypothesize that this may be due to our

method propagating messages after every edge (including repeat edges) and sending

messages over repeated edges as well, resulting in many more messages sent in our

method as compared to DeepGMG. In the graph convolutional network setting, it is

known that too many convolutional layers can lead to over-smoothing, causing em-

beddings for different nodes to become uninformative or indistinguishable (Li et al.,

2018a). The real-world datasets explored here are much larger than the synthetic

graph datasets we explored; we suspect that over-smoothing may become a problem

for our model as the graph size grows. We do note that the version of our method

with an explicit dependence on timestamps does tend to outperform the version that

does not weight messages with respect to time on the real-world datasets, though not

always.

5.5 Discussion and Future Work

Here, we introduced our edge-based generative graph neural network. While

the method performed well on synthetic data, it struggles with some aspects of real-

world graphs. We note that DeepGMG does well in these settings. We suspect this

is due to the increase in the number of messages sent due to repeated edges in our

model as compared to DeepGMG, which may have caused a smoothing of embeddings

that may have caused problems with the larger real-world datasets we considered. In

preliminary work, we explored ways to avoid this in the future, such as reinitializing

the node embeddings periodically, but found this not to improve performance. While

3Note that some entries of the table have fewer repetitions. In practice, we found that several
combinations of model and dataset experienced numerical issues.
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Figure 5.4: Comparison of generated graphs.
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Dataset + Metric Ours (time) Ours (no time) DeepGMG

DBLP n = 4 n = 6 n = 4
MMDdegree 0.38128± 0.00871 0.41075± 0.00616 0.06716± 0.00766
MMDcluster 0.23977± 0.00006 0.23971± 0.00001 0.26312± 0.01346
MMDspectral 0.43224± 0.00550 0.43172± 0.00813 0.15566± 0.00464
KSdensity 0.96535± 0.01185 0.96659± 0.00614 0.47656± 0.07952

Facebook n = 4 n = 6 n = 3
MMDdegree 0.28136± 0.01842 0.36798± 0.01197 0.02309± 0.00195
MMDcluster 0.80871± 0.06119 0.87979± 0.00490 0.30354± 0.00271
MMDspectral 0.24639± 0.01206 0.39674± 0.02369 0.07071± 0.00148
KSdensity 0.96442± 0.02603 0.99933± 0.00045 0.36117± 0.01849

Highschool n = 4 n = 4 n = 3
MMDdegree 0.31491± 0.00859 0.39204± 0.01191 0.19257± 0.01318
MMDcluster 0.21266± 0.00165 0.21684± 0.00106 0.21780± 0.00306
MMDspectral 0.25285± 0.01048 0.34389± 0.01671 0.29707± 0.02010
KSdensity 0.84394± 0.01469 0.76664± 0.06818 0.23444± 0.04132

Infectious n = 4 n = 4 n = 0
MMDdegree 0.44871± 0.02280 0.40831± 0.00882 –
MMDcluster 0.20164± 0.00004 0.20136± 0.00011 –
MMDspectral 0.39669± 0.01661 0.35226± 0.01277 –
KSdensity 0.90475± 0.03048 0.80250± 0.04155 –

MIT n = 0 n = 2 n = 2
MMDdegree – 0.64142± 0.01921 0.09543± 0.00096
MMDcluster – 0.80641± 0.00130 0.63332± 0.00997
MMDspectral – 0.47489± 0.04091 0.09277± 0.00473
KSdensity – 0.82450± 0.08733 0.86000± 0.02121

Tumblr n = 4 n = 5 n = 2
MMDdegree 0.21777± 0.03324 0.33572± 0.01402 0.06708± 0.00416
MMDcluster 0.54088± 0.01591 0.57516± 0.00149 0.35256± 0.01699
MMDspectral 0.18212± 0.02233 0.27061± 0.01587 0.14842± 0.00133
KSdensity 0.74173± 0.05625 0.86281± 0.02615 0.98324± 0.01185

Table 5.4: Real-world dataset results, showing the mean and standard error of each
metric on four trials unless otherwise noted.
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the time-weighted version of our model could theoretically discount messages from

nodes that were not recently communicated with, we could make this more explicit

by only sending messages over edges within a certain window of time from the current

timestamp.
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Appendix A: Supplemental Material for

Spike-and-Slab Probabilistic Backpropagation1

A.1 Approximating Messages Using a Spike-and-Slab Distri-
bution

We take the following for our approximating distribution q, that is, the spike

and (non-central) slab:

q̃(z; ρ̃, m̃, ṽ) = (1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ).

We seek to minimize KL(p∥q̃) with respect to ρ̃, m̃, ṽ. Were q̃ a Gaussian,

this would be solved by moment matching m̃ = Ep[X] and ṽ = Vp[X] (Minka, 2001).

Here, we derive the appropriate values of ρ̃, m̃, ṽ. For simplicity, and since we make

use of a mean-field approximation, we’ll focus on a univariate version, similar to

PBP’s approach:

min
q̃

KL(p∥q̃) ∝ −
∫
R
p(z) log(q̃(z))dz = −

∫
R
p(z) log ((1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)) dz.

We begin by giving values for m̃, ṽ and ρ̃ in terms of the mean, variance, and

probability at zero of the distribution being approximated.

A.1.1 Approximating a Distribution with Known Mean, Variance, and
Probability of Zero

A.1.1.1 Slab Mean Parameter m̃

We begin by seeking to minimize KL(p∥q̃) with respect to the slab’s mean

parameter, m̃:

1This appendix will appear appeared as the supplemental material for Evan Ott and Sinead
Williamson. Spike-and-Slab Probabilistic Backpropagation: When Smarter Approximations Make
No Difference. In I Can’t Believe It’s Not Better Workshop: Understanding Deep Learning Through
Empirical Falsification, 2022b. URL https://openreview.net/forum?id=iYAdBHSA_Pt.
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− d

dm̃

∫
R
p(z) log(q̃(z))dz = −

∫
R
p(z)

∂
∂m

q̃(z; ρ̃, m̃, ṽ)

q̃(z; ρ, m̃, ṽ)
dz

= −
∫
R
p(z)

∂
∂m̃

((1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ))

(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)
dz

= −
∫
R
p(z)

ρ̃N(z; m̃, ṽ)
(
z−m̃
ṽ

)
+ 0

(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)
dz

= −
∫
R
p(z)

ρ̃N(z; m̃, ṽ)
(
z−m̃
ṽ

)
+ (1− ρ̃)δ0(z)

(
z−m̃
ṽ

)
− (1− ρ̃)δ0(z)

(
z−m̃
ṽ

)
(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)

dz

= −
∫
R
p(z)

(
z − m̃

ṽ

)
dz +

∫
R
p(z)

(1− ρ̃)δ0(z)
(
z−m̃
ṽ

)
(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)

dz

= −Ep

[
Z − m̃

ṽ

]
+

∫
R
p(z)

(1− ρ̃)δ0(z)
(
z−m̃
ṽ

)
(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)

dz.

(A.1)

The integral in the final line of Equation A.1 is nontrivial. We approximate

this term by considering the delta function as a limit of the uniform distribution

ua(z) = Unif(z; [−1/2a, 1/2a]), such that as a→∞, we recover the delta function at

0 δ0(z). Because ua is 0 outside the range [−1/2a, 1/2a], we can restrict the domain

of the integral:

I = lim
a→∞

∫
R
p(z)

(1− ρ̃)ua(z)

(1− ρ̃)ua(z) + ρN(z; m̃, ṽ)
f(z)dz

= lim
a→∞

∫ 1/2a

−1/2a
p(z)

(1− ρ̃)a

(1− ρ̃)a+ ρ̃N(z; m̃, ṽ)
f(z)dz.

Under the assumption that (1− ρ̃)a≫ ρN(z; m̃, ṽ) (as a→∞), we have

I ≈ lim
a→∞

∫ 1/2a

−1/2a
p(z)

(1− ρ̃)a

(1− ρ̃)a
f(z)dz = lim

ϵ→0+

∫ ϵ

−ϵ
p(z)f(z)dz.

Setting the derivative in Equation A.1 to zero, we have

Ep[Z] ≈ m̃+ lim
ϵ→0+

∫ ϵ

−ϵ
p(z) (z − m̃) dz

= m̃− m̃ lim
ϵ→0+

∫ ϵ

−ϵ
p(z)dz + lim

ϵ→0+

∫ ϵ

−ϵ
p(z)zdz

= m̃− m̃Pp [Z = 0] + 0.
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This yields our solution

m̃ =
Ep[Z]

1− Pp [Z = 0]
.

A.1.1.2 Slab Variance Parameter ṽ

For the variance parameter ṽ, we similarly obtain:

∂q̃(z; ρ̃, m̃, ṽ)

∂ṽ
= ρ̃

1√
2πṽ

exp

(
−(z − m̃)2

2ṽ

)(
(z − m̃)2 − ṽ

2ṽ2

)
= ρ̃N(z; m̃, ṽ)

(
(z − m̃)2 − ṽ

2ṽ2

)
0 = − d

dṽ

∫
R
p(z) log(q̃(z))dz = −

∫
R
p(z)

∂
∂ṽ
q̃(z; ρ̃, m̃, ṽ)

q̃(z; ρ̃, m̃, ṽ)
dz

= −
∫
R
p(z)

ρ̃N(z; m̃, ṽ)
(

(z−m̃)2−ṽ
2ṽ2

)
(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)

dz

= −Ep

[
(Z − m̃)2 − ṽ

2ṽ2

]
+

∫
R
p(z)

(1− ρ̃)δ0(z)
(

(z−m̃)2−ṽ
2ṽ2

)
(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)

dz

≈ −Ep

[
(Z − m̃)2 − ṽ

2ṽ2

]
+ lim

ϵ→0+

∫ ϵ

−ϵ
p(z)

(
(z − m̃)2 − ṽ

2ṽ2

)
dz.

Thus, we have

Ep[Z
2]− 2m̃Ep[Z] + m̃2 ≈ ṽ

(
1− lim

ϵ→0+

∫ ϵ

−ϵ
p(z)dz

)
+ lim

ϵ→0+

∫ ϵ

−ϵ
p(z)(z2 − 2zm̃+ m̃2)dz

= ṽ(1− Pp[Z = 0]) + m̃2Pp[Z = 0] + 0.

This yields

ṽ =
Ep[Z

2]− 2m̃Ep[Z] + m̃2(1− Pp[Z = 0])

1− Pp[Z = 0]

=
1

1− Pp[Z = 0]

(
Vp[Z]−

Ep[Z]
2Pp[Z = 0]

1− Pp[Z = 0]

)
.
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A.1.1.3 Slab Probability Parameter ρ̃

Finally, for the mass of the slab ρ̃, we have

∂q̃(z; ρ̃, m̃, ṽ)

∂ρ̃
= N(z; m̃, ṽ)− δ0(z)

0 = − d

dρ̃

∫
R
p(z) log(q̃(z))dz = −

∫
R
p(z)

∂
∂ρ̃
q(z; ρ̃, m̃, ṽ)

q̃(z; ρ̃, m̃, ṽ)
dz

= −
∫
R
p(z)

N(z; m̃, ṽ)− δ0(z)

ρ̃N(z; m̃, ṽ) + (1− ρ̃)δ0(z)
dz

= −
∫
R
p(z)

1

ρ̃

ρ̃N(z; m̃, ṽ)− ρ̃δ0(z)− δ0(z) + δ0(z)

ρ̃N(z; m̃, ṽ) + (1− ρ̃)δ0(z)
dz

= −1

ρ̃

∫
R
p(z)dz +

1

ρ̃

∫
R
p(z)

δ0(z)

ρ̃N(z; m̃, ṽ) + (1− ρ̃)δ0(z)
dz

≈ −1

ρ̃
+

1

ρ̃
lim
ϵ→0+

∫ ϵ

−ϵ
p(z)

1

1− ρ̃
dz

= −1

ρ̃
+

1

ρ̃(1− ρ̃)
Pp[Z = 0],

yielding the simple and intuitive result:

ρ̃ = 1− Pp[Z = 0].

A.1.1.4 Connection to Moment Matching

As it turns out, minimizing KL(p∥q) for the spike-and-slab turns out to be

equivalent to matching the slab probability and then matching the first and second

moments:

Pq̃[Z = 0] = 1− ρ̃

Eq̃[Z] = ρ̃m̃

Vq̃[Z] = Eq̃

[
Z2
]
− Eq̃[Z]

2

= ρ̃(m̃2 + ṽ)− ρ̃2m̃2.
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Substituting in the values of (ρ̃, m̃, ṽ) obtained above in the KL-minimization, we find

that we yield the highly intuitive result:

Pp[Z = 0] = Pq̃[Z = 0], Ep[Z] = Eq̃[Z], Vp[Z] = Vq̃[Z].

A.1.2 Message Parameters Following a Linear Layer

Above, we established the values of parameters (ρ̃, m̃, ṽ) in terms of properties

of the distribution we intend to approximate. We now shift our focus to deriving the

specific values for the transformations that occur within spike-and-slab PBP, namely

a linear combination and a ReLU. We begin with the linear combination z
(ℓ,linear)
j =∑

i z
(ℓ−1)
i wij, seeking the values of Ep[z

(ℓ,linear
j ],Vp[z

(ℓ,linear
j ], and Pp[z

(ℓ,linear
j = 0] under

the assumption that

z
(ℓ−1)
i

ind∼ (1− ρ̃
(ℓ−1)
i )δ0 + ρ̃(ℓ−1)N(m̃(ℓ−1), ṽ(ℓ−1))

wij
ind∼ N(mij, vij).

From this, we can calculate the mean and variance

E
[
z
(ℓ,linear)
j

]
=
∑
i

(ρ̃
(ℓ−1)
i m̃

(ℓ)
i )mij

V
[
z(ℓ,linear)

]
=
∑
i

ρ̃
(ℓ−1)
i (m̃

(ℓ−1)
i )2vij + ρ̃

(ℓ−1)
i ṽ

(ℓ−1)
i m2

ij

+ ρ̃
(ℓ−1)
i ṽ

(ℓ−1)
i vij + ρ̃

(ℓ−1)
i (1− ρ̃

(ℓ−1)
i )(m̃

(ℓ−1)
i )2m2

ij.

Now, incorporating the rescaling transformation used by Hernández-Lobato

and Adams (2015), z(ℓ,linear) = W(ℓ)z(ℓ−1)/
√
nℓ−1 + 1, we have

E
[
z(ℓ,linear)

]
= M(ℓ)

(
ρ̃(ℓ−1) ◦ m̃(ℓ−1)) /√nℓ−1 + 1

V
[
z(ℓ,linear)

]
=
[
V(ℓ)

(
ρ̃(ℓ−1) ◦ m̃(ℓ−1) ◦ m̃(ℓ−1))+ (M(ℓ) ◦M(ℓ)

) (
ρ̃(ℓ−1) ◦ ṽ(ℓ−1))

+
(
M(ℓ) ◦M(ℓ)

) (
ρ̃(ℓ−1) ◦

(
1− ρ̃(ℓ−1)

)
◦ m̃(ℓ−1) ◦ m̃(ℓ−1))

+ V(ℓ)
(
ρ̃(ℓ−1) ◦ ṽ(ℓ−1))]/ (nℓ−1 + 1)

P
[
z(ℓ,linear) = 0

]
=
∏
i

(1− ρ̃
(ℓ−1)
i ).
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Combining these moments with the general forms derived earlier, we have the

following equations (replacing Equations 13-14 of the original PBP method) for the

distribution of linear layers in SSPBP with parameters ρ̃(ℓ,linear), m̃(ℓ,linear), ṽ(ℓ,linear):

ρ̃
(ℓ,linear)
j = 1−

∏
i

(1− ρ̃
(ℓ−1)
i )

ρ̃(ℓ,linear) ◦ m̃(ℓ,linear) =
M(ℓ(ρ̃(ℓ−1) ◦ m̃(ℓ−1))√

nℓ−1 + 1

ρ̃(ℓ,linear) ◦ ρ̃(ℓ,linear) ◦ ṽ(ℓ,linear) = ρ̃(ℓ,linear) ◦ V
[
z(ℓ,linear)

]
− (1− ρ̃(ℓ,linear))E

[
z(ℓ,linear)

]2
ρ̃(ℓ,linear) ◦ (nℓ−1 + 1)ṽ(ℓ,linear) =

V(ℓ)
(
ρ̃(ℓ−1) ◦ m̃(ℓ−1) ◦ m̃(ℓ−1)

)
+
(
V(ℓ) +M(ℓ) ◦M(ℓ)

) (
ρ̃(ℓ−1) ◦ ṽ(ℓ−1)

)
+
(
M(ℓ) ◦M(ℓ)

) (
ρ̃(ℓ−1) ◦

(
1− ρ̃(ℓ−1)

)
◦ m̃(ℓ−1) ◦ m̃(ℓ−1)

)
.

(A.2)

A.1.3 Message Parameters Following a Linear Layer and ReLU Activa-
tion

We now consider passing the messages from Equation A.2 through a ReLU,

to get the parameters (ρ̃(ℓ,ReLU), m̃(ℓ,ReLU), ṽ(ℓ,ReLU)) of the resulting message.

To compute these parameters, it’s useful to employ a hierarchical model:

Ai ∼ (1− ρ̃
(ℓ,linear)
i )δ0 + ρ̃

(ℓ,linear)
i N(m̃(ℓ,linear), ṽ(ℓ,linear))

Ti ∼ Ber(ρ̃
(ℓ,linear)
i )

Ai|Ti = 0 ∼ δ0

Ai|Ti = 1 ∼ N(m̃
(ℓ,linear)
i , ṽ

(ℓ,linear)
i )

Bi|Ai = a = ReLU(a) = max(a, 0),
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implying

Bi ∼

1− ρ̃
(ℓ,linear)
i Φ

 m̃
(ℓ,linear)
i√
ṽ
(ℓ,linear)
i

)δ0

+ ρ̃
(ℓ,linear)
i Φ

 m̃
(ℓ,linear)
i√
ṽ
(ℓ,linear)
i

TN(0,∞)

(
m̃

(ℓ,linear)
i , ṽ

(ℓ,linear)
i

)
where TN indicates a truncated normal. Similarly, let’s now introduce a hierarchy

for Bi, along with a “dummy” variable Xi to make the notation below a little more

straightforward:

Li ∼ Ber

ρ̃
(ℓ,linear)
i Φ

 m̃
(ℓ,linear)
i√
ṽ
(ℓ,linear)
i


Bi|Li = 0 ∼ δ0

Xi ∼ TN(0,∞)

(
m̃

(ℓ,linear)
i , ṽ

(ℓ,linear)
i

)
Bi|Li = 1 ∼ δXi

.

Thus, E[Xi],V[Xi], etc. correspond to the conditional expectation and variance E[Bi|Li =

1],V[Bi|Li = 1].

We next compute the moments of (ρ̃(ℓ,ReLU), m̃(ℓ,ReLU), ṽ(ℓ,ReLU)) by the moment-

matching we derived above:

P[Bi = 0] =P[Li = 0] = 1− ρ̃
(ℓ,linear)
i Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

)
E[Bi] =E [E[Bi|Li]] = P[Li = 0] · 0 + P[Li = 1]E[Xi]

=P[Li = 1]E[Xi] = ρ̃
(ℓ,linear)
i Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

)
E[Xi]

V[Bi] =E[B2
i ]− E[Bi]

2 = P[Li = 0] · 0 + P[Li = 1]E[X2
i ]− (P[Li = 1]E[Xi])

2

=P[Li = 1]E[X2
i ]− P[Li = 1]2E[Xi]

2

=ρ̃
(ℓ,linear)
i Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

)
E[X2]

−
(
ρ̃
(ℓ,linear)
i

)2
Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

)2

E[Xi]
2.
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Using the spike-and-slab moment-matching results above, we obtain:

ρ̃
(ℓ,ReLU)
i = 1− P[Bi = 0]

1−
(
1− ρ̃

(ℓ,linear)
i Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

))
= ρΦ

(
m√
v

)

m̃
(ℓ,ReLU)
i =

E[Bi]

ρ̃
(ℓ,ReLU)
i

=

ρ̃
(ℓ,linear)
i Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

)
E[Xi]

ρ̃
(ℓ,linear)
i Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

) = E[Xi]

ṽ
(ℓ,ReLU)
i =

V[Bi]− ρ̃
(ℓ,ReLU)
i

(
1− ρ̃

(ℓ,ReLU)
i

)(
m̃

(ℓ,ReLU)
i

)2
ρ̃
(ℓ,ReLU)
i

= E[X2
i ]− E[Xi]

2 = V[Xi].

In other words, we match the probability mass of the spike and match the mean and

variance in our normal approximation to the mean and variance of the truncated

normal! This yields our final message parameters,

m̃
(ℓ,ReLU)
i = m̃

(ℓ,linear)
i + γi

√
ṽ
(ℓ,linear)
i

ṽ
(ℓ,ReLU)
i = ṽ

(ℓ,linear)
i

1− γi

γi +
m̃

(ℓ,linear)
i√
ṽ
(ℓ,linear)
i


ρ̃
(ℓ,ReLU)
i = ρ̃

(ℓ,linear)
i Φ

 m̃
(ℓ,linear)
i√
ṽ
(ℓ,linear)
i



γi =

ϕ

(
m̃

(ℓ,linear)
i√
ṽ
(ℓ,linear)
i

)
Φ

(
m̃

(ℓ,linear)
i√
ṽ
(ℓ,linear)
i

) .

The intermediate parameter γi can be replaced with a “robust” version as appropriate,

following (Hernández-Lobato and Adams, 2015).

88



A.1.4 Normalization Constant

The normalization constant Z of Hernández-Lobato and Adams (2015) in

Equation 12 (and its uses elsewhere in the automatic differentiation for the model pa-

rameters) is modified slightly in our approach. As final output parameters, we produce

(ρ̃(L), m̃(L), ṽ(L)), along with the homoscedastic noise estimate βγ/(αγ−1) (unchanged

from PBP). As such, the relevant replacement for Equation 12 of (Hernández-Lobato

and Adams, 2015) is

Z ≈ (1− ρ̃(L))N(yn|0, βγ/(αγ − 1)) + ρ(L)N(yn|m̃(L), βγ/(αγ − 1) + ṽ(L)).

A.2 Proof of Equivalence Between PBP and SSPBP with a
Bias Term

Here, we show that after the linear combination step, the models produce the

same resultant distribution. Consider the following model for the output Y of a single

node (for simplicity in notation) with random K-dimensional input x, noting that

this corresponds exactly to the first hidden layer’s activation function and the second

layer’s linear combination step2:

xi ∼ N(m̃i, ṽi), i = 1 : K

ti|xi = ReLU(xi), i = 1 : K

tK+1 ∼ δ1 = N(1, 0) ← the bias term

wi ∼ N(mi, vi), i = 1 : K + 1

y|t,w =
1√

K + 1
w⊤t.

2The factor 1/
√
K + 1 “keeps the scale of the input to each neuron independent of the number

of incoming connections.” (Hernández-Lobato and Adams, 2015)
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Following Hernández-Lobato and Adams (2015), we also assume

αi =
m̃i√
ṽi

γi =
ϕ(αi)

Φ(αi)

v′i = m̃i + ṽiγi.

A.2.1 Parameters of the PBP Message

Under standard PBP, we model the distribution of ti with a Gaussian with

mean m
(t)
i and variance v

(t)
i , where

m
(t)
i = Φ(αi)v

′
i, i = 1 : K, m

(t)
K+1 = 1,

v
(t)
i = (1− Φ(αi))m

(t)
i v′i + Φ(αi)vi(1− γi(γi + αi)), i = 1 : K,

= Φ(αi)(1− Φ(αi))(v
′
i)
2 + Φ(αi)vi(1− γi(γi + αi)), v

(t)
K+1 = 0.

We then approximate the distribution of y using a Gaussian with mean m(y)

and variance v(y), where

m(y) =
1√

K + 1
m⊤m(t) =

1√
K + 1

(
mK+1 +

K∑
i=1

miΦ(αi)v
′
i

)
(K + 1)v(y) = (m ◦m+ v)⊤ v(t) + v⊤(m(t) ◦m(t))

= vK+1 +
K∑
i=1

(m2
i + vi)(1− Φ(αi))Φ(αi)(v

′
i)
2

+ (m2
i + vi)Φ(αi)ṽi(1− γi(γi + αi)) + viΦ(αi)

2(v′i)
2.

(A.3)

A.2.2 Parameters of the SSPBP Message

We repeat our analysis using spike-and-slab approximations, so the distribu-

tion of ti is parameterized by (ρ
(t)
i ,m

(t)
i , v

(t)
i ), and the distribution of y is parameterized

90



by (ρ(y),m(y), v(y)), such that

ρ
(t)
i = Φ(αi), i = 1 : K, ρ

(t)
K+1 = 1,

m
(t)
i = v′i, i = 1 : K, m

(t)
K+1 = 1,

v
(t)
i = ṽi(1− γi(γi + αi)), i = 1 : K v

(t)
K+1 = 0,

and

ρ(y) = 1−
K+1∏
i=1

(1− ρ
(t)
i ) = 1−

K∏
i=1

(1− Φ(αi))(1− 1) = 1

m(y) =
1√

K + 1

K+1∑
i=1

miρ
(t)
i m

(t)
i

=
1√

K + 1

(
mK+1 +

K∑
i=1

miΦ(αi)v
′
i

)
(K + 1)v(y) = −ρ(y)(1− ρ(y))(m(y))2 + v⊤(ρ(t) ◦m(t) ◦m(t))

+ (m ◦m+ v)⊤(ρ(t) ◦ v(t))

+ (m ◦m)⊤(ρ(t) ◦ (1− ρ(t)) ◦m(t) ◦m(t))

= vK+1 +
K∑
i=1

(m2
i + vi)(1− Φ(αi))Φ(αi)(v

′
i)
2

+ (m2
i + vi)Φ(αi)ṽi(1− γi(γi + αi)) + viΦ(αi)

2(v′i)
2.

(A.4)

Comparing Equations A.3 and A.4, we see the two methods are exactly equivalent

after a linear combination step, with slab probability equal to 1 in the spike-and-slab

variant. As such, any future hidden layers will behave identically. In the regression

setting of PBP, the final transformation is solely a linear combination, so the final

output is the same.

A.3 Additional Empirical Results

We include here additional results for RMSE and log-likelihood of different

model configurations. Table A.1 and Tables A.2 and A.3 report the RMSE and
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1 Layer
10 Nodes

Dataset PBP SSPBP

Boston Housing 3.787±0.344 3.789±0.351
Combined Cycle Power Plant 4.057±0.046 4.068±0.042
Concrete Compression Strength 6.221±0.222 6.426±0.184
Energy Efficiency 2.100±0.082 2.086±0.077
Kin8nm 0.140±0.002 0.137±0.003
Naval Propulsion 0.009±0.000 0.009±0.000
Wine Quality Red 0.619±0.010 0.617±0.009
Yacht Hydrodynamics 1.769±0.197 1.747±0.177

1 Layer
100 Nodes

Dataset PBP SSPBP

Boston Housing 3.432±0.244 3.437±0.255
Combined Cycle Power Plant 4.157±0.025 4.159±0.024
Concrete Compression Strength 5.565±0.056 5.574±0.028
Energy Efficiency 1.879±0.063 1.898±0.069
Kin8nm 0.091±0.000 0.091±0.001
Naval Propulsion 0.004±0.000 0.004±0.000
Wine Quality Red 0.630±0.014 0.628±0.014
Yacht Hydrodynamics 1.220±0.057 1.176±0.054

Table A.1: Mean and standard error of average test set RMSE of PBP and SSPBP,
on eight datasets.

log-likelihood for the standard version of PBP and SSPBP, respectively. Similarly,

Table A.4 and Tables A.5 and A.6 report the RMSE and log-likelihood of the “bias-

free” versions of PBP and SSPBP, respectively.
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1 Layer
10 Nodes

Dataset PBP SSPBP

Boston Housing -2.810±0.140 -2.823±0.141
Combined Cycle Power Plant -2.821±0.010 -2.824±0.010
Concrete Compression Strength -3.253±0.039 -3.284±0.032
Energy Efficiency -2.179±0.053 -2.169±0.047
Kin8nm 0.549±0.017 0.567±0.021
Naval Propulsion 3.275±0.008 3.276±0.005
Wine Quality Red -0.941±0.017 -0.937±0.015
Yacht Hydrodynamics -2.022±0.083 -2.012±0.070

1 Layer
100 Nodes

Dataset PBP SSPBP

Boston Housing -2.727±0.106 -2.725±0.111
Combined Cycle Power Plant -2.844±0.006 -2.845±0.006
Concrete Compression Strength -3.136±0.011 -3.138±0.006
Energy Efficiency -2.056±0.034 -2.066±0.038
Kin8nm 0.968±0.003 0.975±0.005
Naval Propulsion 3.949±0.005 3.945±0.006
Wine Quality Red -0.959±0.027 -0.955±0.026
Yacht Hydrodynamics -1.751±0.017 -1.739±0.011

Table A.2: Mean and standard error of the test set log-likelihood of PBP and SSPBP,
on eight datasets.
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1 Layer
50 Nodes

Dataset PBP SSPBP

Boston Housing -2.771±0.076 -2.787±0.087
Combined Cycle Power Plant -2.834±0.009 -2.834±0.008
Concrete Compression Strength -3.149±0.025 -3.157±0.022
Energy Efficiency -2.049±0.042 -2.047±0.041
Kin8nm 0.901±0.008 0.885±0.010
Naval Propulsion 3.725±0.006 3.717±0.007
Wine Quality Red -1.002±0.006 -1.001±0.006
Yacht Hydrodynamics -1.767±0.027 -1.775±0.031

2 Layers
10 Nodes

Dataset PBP SSPBP

Boston Housing -2.576±0.073 -2.535±0.076
Combined Cycle Power Plant -2.828±0.017 -2.830±0.016
Concrete Compression Strength -3.218±0.028 -3.201±0.029
Energy Efficiency -1.802±0.025 -1.878±0.047
Kin8nm 0.784±0.034 0.799±0.015
Naval Propulsion 3.713±0.019 3.686±0.005
Wine Quality Red -1.009±0.025 -1.003±0.016
Yacht Hydrodynamics -1.714±0.054 -1.749±0.032

Table A.3: Mean and standard error of the test set log-likelihood of PBP and SSPBP,
on eight datasets.
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1 Layer
10 Nodes

Dataset PBP SSPBP

Boston Housing 4.120±0.104 4.061±0.149
Combined Cycle Power Plant 4.330±0.033 4.335±0.026
Concrete Compression Strength 8.240±0.081 8.242±0.102
Energy Efficiency 2.060±0.059 2.054±0.067
Kin8nm 0.165±0.001 0.165±0.001
Naval Propulsion 0.009±0.000 0.009±0.000
Wine Quality Red 0.642±0.003 0.636±0.004
Yacht Hydrodynamics 6.248±0.381 6.275±0.353

1 Layer
100 Nodes

Dataset PBP SSPBP

Boston Housing 3.279±0.146 3.260±0.124
Combined Cycle Power Plant 4.208±0.049 4.207±0.047
Concrete Compression Strength 6.726±0.190 6.718±0.183
Energy Efficiency 1.901±0.051 1.901±0.052
Kin8nm 0.156±0.002 0.156±0.002
Naval Propulsion 0.005±0.000 0.005±0.000
Wine Quality Red 0.637±0.008 0.635±0.007
Yacht Hydrodynamics 7.233±0.486 6.215±0.152

Table A.4: Mean and standard error of average test set RMSE of the bias-free versions
of PBP and SSPBP, on eight datasets.
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1 Layer
10 Nodes

Dataset PBP SSPBP

Boston Housing -2.912±0.051 -2.891±0.057
Combined Cycle Power Plant -2.885±0.008 -2.886±0.006
Concrete Compression Strength -3.551±0.015 -3.555±0.018
Energy Efficiency -2.151±0.033 -2.148±0.038
Kin8nm 0.382±0.005 0.395±0.003†
Naval Propulsion 3.251±0.008 3.239±0.008
Wine Quality Red -0.978±0.006 -0.969±0.007
Yacht Hydrodynamics -3.285±0.079 -3.291±0.076

1 Layer
100 Nodes

Dataset PBP SSPBP

Boston Housing -2.597±0.048 -2.589±0.040
Combined Cycle Power Plant -2.857±0.012 -2.856±0.011
Concrete Compression Strength -3.327±0.029 -3.326±0.028
Energy Efficiency -2.067±0.026 -2.068±0.027
Kin8nm 0.441±0.014 0.441±0.013
Naval Propulsion 3.885±0.006 3.895±0.012
Wine Quality Red -0.969±0.013 -0.965±0.013
Yacht Hydrodynamics -3.335±0.046 -3.213±0.027

Table A.5: Mean and standard error of the test set log-likelihood of bias-free versions
of PBP and SSPBP, on eight datasets.
† Due to numerical issues, the five trials for this model were repeated with a different
random seed.
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1 Layer
50 Nodes

Dataset PBP SSPBP

Boston Housing -2.699±0.105 -2.709±0.108
Combined Cycle Power Plant -2.879±0.013 -2.878±0.012
Concrete Compression Strength -3.385±0.019 -3.373±0.026
Energy Efficiency -2.011±0.017 -2.010±0.019
Kin8nm 0.421±0.013 0.424±0.012
Naval Propulsion 3.673±0.006 3.658±0.006
Wine Quality Red -0.944±0.023 -0.939±0.022
Yacht Hydrodynamics -3.264±0.055 -3.290±0.059

2 Layers
10 Nodes

Dataset PBP SSPBP

Boston Housing -2.944±0.191 -2.916±0.146
Combined Cycle Power Plant -2.852±0.004 -2.851±0.006
Concrete Compression Strength -3.343±0.034 -3.349±0.033‡
Energy Efficiency -1.902±0.018 -1.850±0.021
Kin8nm 0.655±0.009 0.662±0.005†
Naval Propulsion 3.772±0.029 3.703±0.021
Wine Quality Red -0.974±0.022 -0.986±0.025
Yacht Hydrodynamics -2.687±0.054 -2.730±0.068

Table A.6: Mean and standard error of the test set log-likelihood of bias-free versions
of PBP and SSPBP, on eight datasets.
† Due to numerical issues, the five trials for this model were repeated with a different
random seed.
‡ Due to numerical issues, we report results from seven trails out of ten that yielded
finite values for the test set log-likelihood.
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Appendix B: Exploration of Gas Dataset

Figure B.2 shows the results of a study on the Gas dataset, following Papa-

makarios et al. (2017). We selected the Gas dataset in part because it is relatively

low-dimensional with considerable structure and some approximately marginally nor-

mal covariates (see Figure B.1). Here, we compare the test log-likelihood performance

of the MAF model under different modifications, focusing on whether the weighted-

likelihood bootstrap (WLB) or nonparametric learning (NPL) Fong et al. (2019)

approaches offer discernible benefit.

In all of the experiments shown, 10 models were trained using early stopping

when, after 30 epochs, the average validation set log-likelihood failed to improve,

resetting to the best parameters found. The model with the best average validation

set log-likelihood was selected, and the test set log-likelihood is presented in Figure

B.2 (mean ± standard error). The original MAF model’s results are in black, WLB

results are in blue, and NPL results are in red and purple (getting darker as the

concentration parameter α increases from left to right). The red results use pseudo-

inputs drawn from the remaining elements of the training set not otherwise used in

training (simulating a “historical data” approach), and the purple results use pseudo-

inputs drawn from a multivariate normal prior with mean and covariance set to that

of the training subset. WLB and NPL results with a circle marker indicate that

the base distribution is a multivariate normal with mean and covariance set by the

weighted minibatch (in this case, the full training subset), while results with a triangle

marker only have the identity matrix as the covariance.

Each of the four main groups of results uses the same subset of the Gas training

set, with the specified number of examples (500, 1000, 5000, 10000). Within each

group, there are eight versions of the model, indicated by the lines near the top of

figure.
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Figure B.1: Pairs plot of a sample of 5000 training set points of the Gas dataset (with
histograms of each variable along the diagonal).
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A black line in the “Init” row indicates that those models were preinitialized

to an identity transformation, using 1000 epochs of 1000 examples from a uniform

distribution on the bounding box of the training subset and a MSE loss between

the examples and their preimage (unweighted). Our thinking (based on previous

explorations not shown here) was that the MAF model seemed somewhat unstable,

and that pretraining the flow to a sensible transformation may help that stability.

A black line in the “BN” row indicates that the MAF model uses batch nor-

malization between each of the MADE layers (which was the case in the original MAF

model). While batch normalization typically aids ML models, we experienced some

numerical issues in MAF models and wanted to see if it was helpful in these settings.

Finally, a black line in the “Blocks=5” row indicates that the model uses five

MADE blocks (or layers), following the original MAF paper, otherwise, it uses only

one layer. This allows for a crude exploration of shallower and deep models.

Among the conclusions from this round of experiments, we learned:

• There are regimes where the Bayesian methods offer benefit against the original

method, even with larger data on simpler models (e.g., all the mean-only WLB

and NPL models with one block and N=10000).

• For the deeper models, some additional techniques seem necessary for good

performance, whether preinitialization or batch normalization.

• For the NPL models, there was little relative distinction between the two priors

for the pseudo-inputs, even though the “empirical” model allowed for informa-

tion leak from the rest of the training set and the multivariate normal model

did not.

• In sensible settings, the mean-only models seem prudent compared to the full

covariance models.
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Figure B.2: Experimental results on the Gas dataset with the MAF model under
many conditions. See main text (§B) for discussion. Best viewed in color.
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Appendix C: Additional Background

This appendix includes brief elements of background not otherwise explicitly

covered in the main text.

C.1 Distributional Distances and Divergences

The Kullback–Leibler (KL, Kullback and Leibler, 1951) divergence is an asym-

metric means of comparing distributions:

KL(p∥q) =
∫

p(x) log

(
p(x)

q(x)

)
dx.

Maximum mean discrepancy (MMD, Gretton et al., 2012) is a kernel-based

statistic to compare samples from two distributions; given a kernel function k(x, y)

and samples X = {x1, . . . , xn} and Y = {y1, . . . , ym}, the MMD can be estimated

using:

MMD2(X, Y ) =
1

n2

n∑
i=1

n∑
j=1

k(xi, xj) +
1

m2

m∑
i=1

m∑
j=1

k(yi, yj)−
2

nm

n∑
i=1

m∑
j=1

k(xi, yj).

C.2 Dirichlet Process

The Dirichlet process is a distribution over probability distributions. Given a

concentration parameter α and base distribution H, samples F ∼ DP(α,H) have the

property that, for any partition of the domain {Si}ki=1,

(F (S1), . . . , F (Sk)) ∼ Dir(αH(S1), . . . , αH(Sk)).
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This happens to correspond to a representation by a stick-breaking process with atoms

{xi}∞i=1 as i.i.d. samples of H with

βi ∼ Beta(1, α)

F =
∞∑
i=1

(βi

i−1∏
j=1

(1− βj))δxi
.

C.3 Additional Background for Graphs

C.3.1 Graph Statistics

Several graph statistics are helpful in comparing the structure of graphs. The

density of a graph (with no repeated edges) is the number of edges in the graph divided

by the total number of possible edges, giving an overall notion of how connected nodes

in the graph are.

Node-level properties can also be aggregated to construct a graph-level statis-

tic. N(v) = {vi|(v, vi) ∈ E} represents the neighbors of node v. Similarly, node v has

degree deg(v) = |N(v)|. The graph’s degree distribution is the probability distribution

over all nodes’ degrees.

The (local) clustering coefficient

C(v) =
2 |{(vi, vj) ∈ E|vi ∈ N(v) ∨ vj ∈ N(v)}|

deg(v)(deg(v)− 1

measures how connected nodes in node v’s neighborhood are, in comparison to its

neighborhood being fully-connected. The local clustering coefficient distribution,

then, provides a notion of the local connectedness aggregated over the whole graph,

using each node’s clustering coefficient.

Another useful graph statistic relies on the spectrum of the normalized graph

Laplacian L = I − D−
1
2AD−

1
2 , where A is the adjacency matrix of the graph such

that Aij = 1 if and only if (vi, vj) ∈ E, D is the diagonal matrix of degrees with Dii =

deg(vi), and I is the identity matrix. The eigenvalues of L provide a characteristic
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of the graph that is useful in spectral graph theory. Of particular note is that the

eigenvalues will all have values 0 ≤ λ ≤ 2, making comparisons more straightforward.

The Laplacian spectrum distribution aggregates these over multiple graphs.

C.3.2 Graphons

Graphons (Lovász, 2012) are symmetric functions W : [0, 1]2 → [0, 1] that

parameterize exchangeable simple graphs. From Orbanz and Roy (2014, Corollary

III.6), a random simple (that is, undirected and without self-loops) graph G is vertex-

exchangeable if and only if there is a graphon W such that its adjacency matrix A

has:

Aij
d
= 1

[
U{i,j} < W (Ui, Uj)

]
,

where Ui, Uj, U{i,j} are i.i.d. U([0, 1]) random variables, independent of W . In other

words, for every vertex vi, we assign a representation Ui, with the probability of an

edge between nodes vi and vj being given by the graphon W (Ui, Uj). If W is constant

everywhere, for example, we recover the Erdős et al. (1960) model for random graphs.

Similarly, a stochastic block model can be recovered with a piecewise constant function

based on a partition of the input domain [0, 1].

C.4 Weighted Likelihood Bootstrap

The Weighted Likelihood Bootstrap (Newton and Raftery, 1994) considers an

alternate form of bootstrap sample. In this case, rather than resampling the data,

each observation’s contribution to the likelihood is given a random weight in the

exponent, replacing the standard likelihood with
∏

i p(yi|θ)wi . The random weights

are drawn from a Dirichlet distribution as w ∼ Dir(1, . . . , 1). Bootstrapped samples

of θ can be obtained following Algorithm C.4.
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Algorithm 5 Weighted Likelihood Bootstrap (from Lyddon et al. (2019)).

Observed samples are y1:n
for i = 1, . . . , B do
Draw random weights gi = (gi1, . . . , gin) with n−1gi ∼ Dir(1, . . . , 1)
θ(i) = argminθ

∑n
j=1 gij log p(yj|θ)

end for
Output (θ(1), . . . , θ(B))

C.5 Recurrent Neural Networks

Recurrent neural networks (RNNs, Rumelhart et al., 1986) are used in our

model in Chapter 5 in the mechanism to update node embeddings, so we provide

a brief introduction here. RNNs extend the basic structure of an FFNN to allow

for sequential data. Assuming we have a sequence of vectors x(t) ∈ Rp, we could

incorporate a state that persists between two elements of the sequence, such as:

h
(t)
ℓ = σℓ(Wℓh

(t)
ℓ−1 + Uℓh

(t−1)
ℓ + bℓ),

taking for example h
(0)
ℓ = 0, where Uℓ is introduced as a weight matrix referring to

any temporal relationship between elements of the sequence. This basic idea can has

been extended in many ways, with some popular constructions being long short-term

memory (LSTM, Hochreiter and Schmidhuber, 1997), or the gated recurrent unit

(GRU, Cho et al., 2014). In these or other RNN approaches, we can still recover an

efficient means of learning parameters through backpropagation by noting that the

recurrent construction may be “unfolded” to form a computational sequence similar

to that of a FFNN, only with parameters that are shared between the multiple places

they appear.
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