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SUMMARY

Over the past 30 years, an average of 85 people died each year in the US due to

flash-floods, making them the most fatal severe weather condition [1]. Particularly

in Central Texas, the “most flash-flood prone area in the United States,” [2] we need

to accurately predict rainfall. However, meteorologists continue to manually adjust

state-of-the-art physical models based on experience [3].

The National Weather Service creates flash-flood warnings based on Doppler radar

station estimates of rainfall occurring over the past hour. As such, estimating rainfall

directly impacts public safety – overestimates cause extraneous warnings that are

easily ignored while underestimates fail to warn those in danger. Unfortunately,

Doppler radar can miss the mark, yielding misleading results. If a method existed

to update these estimates to make them more accurate, meteorologists could make

better flash-flood predictions, saving lives. Furthermore, if this method were robust

and based on data, rather than heuristics, it could be trusted as a step in post-

processing of radar scans, seamlessly integrating with existing systems.

This project uses neural networks and conditional random fields – equipment from

the toolbox of machine learning – to create a data-based model for updating Doppler

radar rainfall estimations. To do this, the neural network is “trained” (uses actual

observations to learn patterns) using the Lower Colorado River Authority’s network

of rain sensors. These rain sensors provide a ground-truth value for the rainfall in

the Central Texas area. The neural network compares the Doppler radar estimates

and the rain sensor ground-truth to learn how to better predict rainfall from radar

scans. The neural network can also employ a rough estimate of the true rainfall from a
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subset of the rain sensors to make even better overall rainfall estimates. Furthermore,

conditional random fields provide a method of smoothing these predictions, leveraging

the fact that drastic changes in rainfall are not physically reasonable (at least, in

general case).

Based on the machine learning techniques referenced above, I sought to create a

system that could make rainfall estimates more accurately (based on the ground-truth

rain sensors) than the näıve estimate provided directly by Doppler radar. To do this,

I implemented neural network and conditional random field algorithms, using many

different experimental configurations. Each of these was used to create a potential

system which was then compared against the Doppler radar estimates.

Although testing more configurations would provide additional statistical cer-

tainty, the system “in the middle” of those tested produced the best results. To be

more explicit, the neural network model with a reasonably large number of neighbor-

ing cells used in the calculation, but no conditional random field algorithms applied,

gave the smallest error under both utilized error metrics, meaning that it produced

the best rainfall estimates. Furthermore, each tested configuration is consistent with

or out-performs the standard Doppler radar estimate. As such, any of the tested net-

work configurations seem to be a valid post-processing tool to create better rainfall

estimates, providing a simple avenue to make more accurate flash-flood predictions

in Central Texas.
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CHAPTER I

BACKGROUND

Theoretical weather models date to the 1940s and ’50s, as access to digital computers

became possible[4]. Since then, meteorology shifted from an experience-based field to

a scientific one. However, because even the simplest propagation models are chaotic,

state-of-the-art predictions often still combine physical simulations with first-hand

experience.

One method for producing forecasts has been largely unexplored: machine learn-

ing. Machine learning algorithms create approximation functions based on “training”

data – examples where expected output is known. Neural networks are one such

method, which are particularly good at approximating nonlinear functions.

Neural networks (and conditional random fields, to a smaller extent) have been

used previously [5, 6, 7, 8]. Hung provides an excellent survey of previous work in

[5]. Many of these predict rainfall at particular weather stations or even forecast

weather conditions for an entire city. While many employ advanced neural network

strategies (including past measurements in the estimation for current values with

recurrent networks, adding in additional channels of data such as humidity, etc.), few

attempt to predict rainfall on a point-by-point basis. French does this with simulated

data over a region of approximately the same size as in my project (roughly, 100km

by 100km), but uses roughly a quarter of the number of input and output nodes as

mine [6]. Thus, my project exceeds French’s by increasing the resolution of each cell

over a similarly sized region, and applying real-world data sets to the neural network

to determine how well an applied system can perform.
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CHAPTER II

DATA DESCRIPTION

2.1 Doppler Radar

For my project, I used the region −99◦ 14′ 42” E to −98◦ 25′ 30” E and 30◦ 17′ 57” N

to 30◦ 59′ 8” N. This region was split into a grid of 82×98 cells, each representing a

region of (0.0084◦)2 or approximately .74mi2 (a total area of 2300mi2 = 6000km2 =

1.5× 106acres). Based on a Voronoi diagram (Thiessen polygons, see Section 2.4) of

the rain gauges in the Lower Colorado River Authority’s network of weather stations,

the region is covered by 71 rain sensors (see Figure 2.1). Additionally, the National

Weather Service has two radar stations that cover this region: EWX (Austin / San

Antonio region, based in New Braunfels, Texas) and GRK (Central Texas region,

based in Granger, TX). This allows for many experimental configurations of input to

the neural network.

Using NOAA’s Storm Events Database at www.ncdc.noaa.gov/stormevents/, I

created a listing of all known major storms in Travis county between 2010 and 2014

that were categorized as tornadoes, hail, thunderstorm wind, flash-flood, flood, light-

ning, winter storm, strong wind, heavy rain, winter weather, or high wind. This

request resulted in 230,294 NetCDF files from Doppler radar, split between the two

radar locations. This large number is due to the construction of the requests: I re-

quested data for the date of the recorded storm and the two days on either side. The

Doppler radar stations sweep 360◦ every 3 to 15 minutes, running at the higher rate

during storm activity.

National Weather Service radar data was requested using a custom Python script

that makes requests through the National Oceanic and Atmospheric Administration’s
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(NOAA) National Climatic Data Center (NCDC), through the NEXRAD Data Inven-

tory system ncdc.noaa.gov/nexradinv/. In particular, I requested the N1P channel

of data, which is the one-hour precipitation. This is a Doppler-only-based estimate

of the total precipitation over the last hour, which is “used to assess rainfall inten-

sities for flash-flood warnings” [9]. This is based on a simplified model where the

reflectivity measured by the difference in reflected signal in decibels (Z) is estimated

(from prior data) to be related to the rain fall rate (in inches per hour) rate by a

simple power law: r = 1.54× 10−11Z6.57 (based on data from the base reflectivity at

srh.noaa.gov/jetstream/doppler/baserefl.htm). This measure is integrated over the

last hour of estimates to estimate the one-hour precipitation. While this is a reason-

able estimate, it is not the “whole story” as the radar is limited in terms of its ability

to make this estimate. The NEXRAD Data Inventory system provides the data in

NetCDF format, which can be read using the ucar.nc2 package in Java.

2.2 LCRA Rain Gauges

The Lower Colorado River Authority data is available for individual rain gauges at

hydromet.lcra.org/chronhist.aspx. In personal correspondence, I obtained the his-

torical data needed for the region listed above in bulk. This entailed the rainfall

recorded at each of the rain gauges between two measurements, with the times of

those measurements given. To have the data sets represent the same physical quan-

tity (estimated and observed precipitation over the past hour), I wrote a small script

to add together the past hour’s rainfall for every available data point at each sensor,

and used this augmented value in all experiments. The Doppler and LCRA data are

all given in inches, so the neural network’s role is simply to update estimates from

Doppler radar on the same scale as originally provided (see Section 3).
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Figure 2.1: Map indicating the counties represented in the data analyzed (black),
rivers (light blue), location of rain gauges (red), and a Voronoi diagram corresponding
to the regions closest to each of the sensors (various shades of blue).

2.3 Cleaning Data

In order to create an effective training and test data set, I pruned the 230,000 NetCDF

files to those that have corresponding data from at least 65% of the LCRA sensors in

the region within 15 minutes of each radar scan. Furthermore, I only included those

files from one radar station that are within 15 minutes of a scan from the other station

(so that data from both stations can be used simultaneously). Finally, I removed all

files where there was not a single pixel where both radar and LCRA sensors had a

non-zero value. This left 2,189 files for each radar station. These correspond roughly

to approximately 36 storms. Further, the rain values were normalized based on the

maximum value from either data set (5.16 inches in a single hour). That way, the

sigmoid used in training could theoretically produce any rain value.

The NetCDF files are given in polar coordinates as the distance d in miles from

the radar station to the point observed and θ in degrees, measured clockwise from
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North. To convert these points to a latitude–longitude pair (λ, φ), the following

transformation was applied:

λ0 = radar station latitude

φ0 = radar station longitude

d = distance in miles

θ = bearing angle, measured clockwise from North

RE = radius of Earth, in miles

δ =
d

RE

(2.1)

λ = arcsin [sin(λ0) · cos(δ) + cos(λ0) · sin(δ) · cos(θ)] (2.2)

φ = φ0 + arctan

[
sin(θ) · sin(δ) · cos(λ0)

cos(δ)− sin(λ0) · sin(λ)

]
(2.3)

2.4 Voronoi diagrams

Because the Doppler radar data gives a rainfall estimate over each cell in the grid

(see Section 2.1), the rain gauge measurements should also be interpolated over the

grid space. One particularly apt, straightforward way to interpolate values over a

grid with discrete measurements is to use Voronoi diagrams.

Voronoi diagrams (otherwise known as Thiessen polygons) are a fairly simple

construct. The following description generalizes to N dimensions, but for this project,

a 2D discussion and visualization will suffice. Given a set S of points pi ∈ S with

pi = (xi, yi), and a distance metric d : R2 × R2 → [0,∞), identify the corresponding

set of points Ri ∈ R2 such that ∀p ∈ Ri : ∀q ∈ S : d(p, pi) ≤ d(p, q). In other words,

the Voronoi diagram partitions the plane into the sections that are each closest to

a particular point under a given distance metric. So, by using the location of each

of the rain gauges, I generated a Voronoi diagram of each region that is closest to a

particular rain gauge. The measurement from each rain gauge is then applied over

the corresponding region.
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Figure 2.2: Figures demonstrating Voronoi diagrams for a set of points (black) under
the Euclidean distance metric dE(p1, p2) =

√
(x1 − x2)2 + (y1 − y2)2 (left), and the

Manhattan distance metric dM(p1, p2) = |x1 − x2|+ |y1 − y2| (right).
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CHAPTER III

ARTIFICIAL NEURAL NETWORK STRUCTURE

3.1 General Structure

An artificial neural network (ANN), for my purposes, is simply an approximation

function that takes an input vector in Rn and produces a vector in Rm, where n

may not equal m. Often (as in the case for my project), the domain is reduced for

simplicity to [0, 1]n and range to [0, 1]m, creating a “normalized” ANN. To create

the output vector, the ANN creates a fixed number of intermediate values for aiding

the approximation. To do so, the ANN takes repeated transformations of weighted

sums.

To make this more concrete, let xi represent a value (input, output, or interme-

diate) in the network (also referred to as a “node,” given the graphical nature of

the structure of the ANN). For ∀i ≤ n, xi is simply the ith component of the input

vector. Let N be the total number of nodes in the ANN (N = n + m + k, where k

is the number of intermediate nodes). Then for ∀i s.t. N −m+ 1 ≤ i ≤ N , xi is the

(i− n− k)th component of the output vector. To compute the values of xi for i > n,

we have the following:

zi =
∑
j<i

Wi,j · xj + θi

xi = f(zi) (3.1)

where θi is a fixed offset for each node, Wi,j is the weight matrix, which indicates

the relative weights in the sum (the entries of which will be discussed below), zi is the

weighted sum of all previous nodes, and f(z) is called the “activation function.” For a
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Figure 3.1: Example neural network. Circles represent “nodes” in the network, where
1-5 are input nodes, 8 is the output node, and 6-7 are hidden. Values along the edge
represent the weight in the sum seen in Equation 3.1. The dashed line between 3 and
8 shows that a node in the network can, in general, depend on any previous node
(though this is not represented in the functions above).

normalized ANN, with no constraint on the weight matrix’s values, f must be defined

on f : R→ [0, 1]. Typical examples used are: the step function f(z) =

 0 z ≤ 0

1 z > 0
,

the hyperbolic tangent function f(z) = 1
2

(1 + tanh(z)), and the sigmoid function

f(z) = (1 + exp(−z))−1.

In context, xi (where i < n) refers to the estimated rainfall from one of the Doppler

radar stations for a particular cell in the grid. For the last m values of xi, it represents

the ANN’s best estimate of rainfall at a particular cell in the grid. The values zi are

all intermediate weighted sums of the rain values from the previous values in the

network. Physically, this is essentially taking a weighted average of cells in the grid

to produce an estimate. Once spatial structure and layers are added to the network,

this is exactly the quantity zi represents (with different layers representing a sort of
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iterative calculation thereof). f(z), the activation function, represents the constraints

of the ANN’s values for xi (the estimated rainfall). The data are normalized (scaled

to a range [0,1]) so each node can only take on such a value. So, f(z) ensures our

estimates are physically realizable.

3.2 Incorporating Spatial Structure

The weights in Wi,j will be determined using the “backpropagation” algorithm (see

Appendix A). But by applying constraints based on the problem at hand, many

weights can be configured to be 0. For example, as shown above, ∀j ≥ i,Wi,j = 0.

One logical constraint when considering spatial data is a spatial dependence: when

two nodes refer to locations that are “too far” away from each other, their values do

not depend on each other (at least, not directly). Mathematically, we can associate

each node xi with a physical location (e.g., (x, y), or (latitude, longitude), etc.), called

Li. We assign a maximum distance dmax, such that ∀i, j,

‖Li − Lj‖ > dmax ⇒ Wi,j = 0

3.3 Layers

As an additional optimization, many ANNs have “layers” of nodes. To simplify

the scenario, assume that the input and output vectors have the same number of

dimensions (n = m). Now, let N mod n = 0, meaning that the number of interme-

diate nodes in the network is a multiple of the number of input/output nodes. We

can impose the following constraint on the weight matrix (in addition to those out-

lined above): Wi,j can only be non-zero if ∃p ∈ (Z
⋂

[1, N/n]) s.t. ∃i′, j′ < n s.t. i =

pn + i′ and j = (p − 1)n + j′. In other words, the network is partitioned into sets

s1 = {x1, x2, ..., xn}, s2 = {xn+1, xn+2, ..., x2n} and so forth, where all the nodes in

set sp can only have non-zero weights for nodes in set sp−1. Each of these sets is then

called a “layer,” because if the weights were viewed in terms of a weighted adjacency
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matrix, there would be discrete groupings of nodes based on the connections in and

out of each group. Thus, we have an “input layer” containing the values for the input

vector, an “output layer” containing the values for the output vector, and N/n − 2

“hidden layers” which hold the intermediate values.

The layered approach enables greater computational efficiency when attempting

to calculate the output vector. Calculations have to propagate from xn+1 through

to xN , but the layered approach only requires all previous sets of values to be com-

puted, rather than all values. Said another way, each node in a layer is completely

independent of the other nodes in the layer. So, multithreading can help speed up

calculations by attempting to compute all values for a layer simultaneously (though

obviously, unless n ∼ the number of CPUs available, not all values can be computed

at the same time – just that they can be computed as an atomic unit).

My implementation relaxes the layering constraint slightly. Nodes in any set sp

with p > 1 can be connected to the input vector (nodes in s1). The intuition here is

that if the best approximation involves fewer iterations of the activation function f

than the number of layers in the ANN, this implementation should be able to converge

on that approximation instead.
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CHAPTER IV

TESTING ANN IMPLEMENTATION

One test I performed on my neural network implementation to determine if it was

indeed generating a reasonable approximation function was to use the simple case

of a sigmoid. I randomly generated 100 points xi ∈ [0, 1), then applied the function

f(x) = 1/(1+exp(−x)), creating a test set of points (xi, f(xi)). I then applied various

ANN configurations to this data set, with varying number of iterations (training the

network on all 100 values each time):{10, 20, 50}, and varying number of hidden layers

(as defined in Section 3.3): {0, 1, 2, 4, 8}. 100 ANNs with randomly initialized starting

weights were trained for each configuration (number of training iterations and number

of hidden layers). Since the ANN is actually an iterated sum of sigmoids (as given in

Equation 3.1 with f defined as the sigmoid above), the entire network can be reduced

to a function of the input variable xi through expanding the weighted sums.

4.1 Series Approximation

For example, the following function was produced as the result of 50 training iterations

with a single hidden layer (so two total layers):

f̂(xi) =
1

1 + e−(0.865·xi+0.683·(1/ (1+exp(−(0.987xi+0.482))))+ −0.426)
(4.1)

Because this is no longer a simple sigmoid, we have to construct a means by which

we can determine if it indeed approximates the function f(xi) = 1/(1 + exp(−xi)).

One method is the Maclaurin (Taylor, centered at xi = 0) series approximation of

both functions. To eighth order, the sigmoid function can be approximated as:

f(xi) ≈ 0.5− 0.25xi + 0.02083x3
i − 0.00208x5

i + 0.00021x7
i

11



The ANN represented in Equation 4.1 has coefficients that are extremely close to

those of the ideal sigmoid:

f̂(xi) ≈1.08× 10−4x8
i − 4.27× 10−4x7

i − 0.000495x6
i

+ 0.00322x5
i + 0.00186x4

i − 0.0251x3
i − 0.00438x2

i + 0.256xi + 0.499 (4.2)

To the doubting statistician, this seems rife with potential for coincidence. However,

the tests described above show conclusively that this alignment is no accident.

For each configuration of the ANN (number of training iterations and number of

hidden layers), each of the 100 ANNs were expanded mathematically as in Equation

4.1, which simply expands all the levels of the network to their dependence on the

input variable xi. The resultant functions (which were iterated sigmoid functions)

were then approximated to 8th order (choice of 8th order was arbitrary, but meant to

reflect a broad range of coefficients and help model the nonlinearity of the function

being approximated). For each configuration, the mean and standard deviation of

each coefficient was computed. The average coefficient for each configuration is used

to create Figure 4.1. For example, for 10 iterations and 0 hidden layers, the coefficients

for the approximation f̂(xi) =
∑8

n=0 c0x
n
i are:

Coefficient Exact Measured
c0 0.5 0.508± 0.048
c1 0.25 0.411± 0.023
c2 0 -0.001± 0.001
c3 -0.020833... -0.012± 0.002
c4 0 0.0001± 0.0001
c5 0.0020833... 0.0018± 0.0003
c6 0 -0.000015± 0.000010
c7 -0.000210813... -0.00018± 0.00003
c8 0 1.7× 10−6 ± 1.2× 10−6

Table 4.1: Table of Maclaurin coefficients taken from the mean and standard deviation
of 100 ANNs with 10 training iterations and 0 hidden layers, compared with the exact
result of the Maclaurin series for 1/(1 + exp(−x)).
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Figure 4.1: Average function predicted by each of the 15 configurations. In black is the
true sigmoid function. The two functions that are visually far from the true sigmoid
are those with 20 and 50 iterations and 0 hidden layers. Their non-correspondence
with the rest of the results would then appear to be a simple case of overfitting an
insufficiently complex model.

By similar construction for all 9 coefficients for all 15 configurations, I computed

the z-score for each coefficient, taking the model under the null hypothesis to be Gaus-

sian with mean value (µi) of each coefficient to be the Maclaurin approximation of a

sigmoid, and the standard deviation taken to be the standard error from each sample

(σ̂i = SEi). With this, I performed a two-tailed z-test of the distributions (since each

coefficient was the average from 100 ANNs, the Normal/Gaussian approximation to

the t-distribution should be valid) for each coefficient at the α = 0.05 level. In other

words, for each coefficient, I determined how many standard deviations away from

the exact result it was (zi = xi−µi
σ̂i

), and determined how likely a result that extreme

was:
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P (|z| > |zi|) =

∫ |zi|
−|zi|

1√
2π

exp

(
−z

2

2

)
dz = erf

(
|zi|√

2

)
(4.3)

This is known, perhaps more simply as the p-value for each coefficient in each

configuration. With N = 9× 15 = 135 total coefficients, I determined how many had

a p-value less than α = 0.05: 7. That means 5.19% of the time, the result was so

strange that it should have appeared 5% of the time. Said another way, 5.19% of the

time, the coefficient has a z-score with |zi| > 1.96, which corresponds to α = 0.05.

Under the assumption that this distribution draws from the Binomial distribution

with size N = 135 and “success” probability p = α = 0.05 (where the mean number

of times of seeing such a strange result is µ = Np = 6.75 and the standard deviation

is σ =
√
Np(1− p) = 2.53), we could expect to observe 7 or more coefficients to have

|z| > 1.96 very often (51.5% of the time, to be more precise). This is one way to

look at multiple hypothesis testing, and at least provides reasonable evidence that we

shouldn’t be surprised by the result.

Furthermore, I performed the same analysis after using the Benjamini-Hochberg

procedure [10], which controls the false discovery rate (number of rejections of true

hypotheses over total number of hypothesis rejections). See Appendix B for details.

This resulted in 3 coefficients deemed significant out of 135. This is a more significant

result (in a very strong sense, this procedure controls for false discoveries). If a second-

order approximation is used instead, 0 coefficients are significant (with third-order

and above creating significant coefficient differences). To me, this indicates that

using the series approximation to a high order (especially if the high-order terms are

close to zero), the slight variation in estimated coefficients may be large enough to

falsely indicate a significant difference. However, this is indeed a potential source

of doubt of reliability in the ANN implementation. Because it was only a small

number of coefficients (that go to zero with a smaller-order approximation), and

because other metrics indicate reliability in the ANN, I am inclined to believe they are
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only significant through what amounts to insufficient training to fine-tune parameters

beyond a reasonable amount.

Because of this, we can fully expect to see such a distribution of z-scores for each

of the coefficients, so we cannot reject the overall null hypothesis. In other words, we

have failed to provide sufficient evidence to show that the results obtained from the

ANN code are inconsistent with an approximation of the function used for training.

As such, we can then proceed to assume that the ANN code produces functions that

are reasonable approximations of the underlying training function.

4.2 Best Fit

One less extensive way to test whether the ANN code produces reasonable approxima-

tion functions is leveraging nonlinear model fitting functions, such as Mathematica’s

FindFit function. In this case, the ANN’s approximation function is used to pre-

dict pairs
(
xi, f̂(xi)

)
, for input values xi ∈ {0, 0.001, 0.002, 0.003, ..., 0.998, 0.999, 1}.

FindFit is then used to fit the function fa,b(x) = (1 + exp[−(a · x+ b)])−1 for coef-

ficients a, b. Once again grouping the ANNs by configuration, I can find the mean

and standard deviation of the estimations of a and b, and compare them to the true

values a = 1, b = 0. Again assuming that the standard deviation for each parameter

for each configuration is the standard error from the sample, I can determine if the

average estimate is within 1.96 standard deviations of the true value (again, where

z = 1.96 corresponds to α = 0.05). And indeed, this is the case for all 15 configura-

tions for both parameters. The likelihood of having all of the 30 values be within 1.96

standard deviations (again assuming a Binomial distribution, this time with N = 30

and p = α = 0.05, and calculating the probability that the number of “successes” is

0) is 21.5%. Thus, once again, our result is well within reason for the null hypothesis

that the ANN code produces functions that are reasonable approximations of the

underlying training function. So, we fail to reject the null hypothesis and can assume
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(with two different tests in hand) that the code works as intended.
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CHAPTER V

CONDITIONAL RANDOM FIELDS

The idea behind conditional random fields (or CRFs) stems from the classification

problem in a graph structure, G = 〈V,E〉. In relation to the discussion above, the

vertices would represent the individual cells in the grid, and the edges would represent

the connections to neighboring points on the grid. While the ANN produces a single

value for the rainfall estimate, we can easily modify the result to be categorical

in nature, rather than strictly numerical. In particular, we can instead create an

estimated probability distribution at each point (vertex) of the rainfall being one

of several different levels of rain (no rain, light rain, heavy rain, etc.). Leaving the

particulars of this change unspecified for this discussion for now, we can think about

the implications of having a probability distribution among labels at each vertex.

Assume we have output from the ANN that represents the probability distribution

between |L| “labels” at each vertex v ∈ V (so the output size obtained from the

neural network would then be |V | · |L|). When attempting to report the rain level

at each vertex, we can report the label with the highest probability (to introduce

some notation, let Pv(l) be the probability of observing label l ∈ L at vertex v ∈ V

– the level reported is then argmaxl∈LPv(l)). But can we do better? For example, if

we know ∃(u, v) ∈ E and for some l ∈ L, we have Pv(l) ≈ 1, then we might expect

Pu(l) to similarly be close to 1. Said another way, if we are confident about the label

for one vertex, and it is connected to a neighbor, should we not expect the neighbor

have the same label? If we apply this to weather, we could say that if we have high

confidence in the probability of severe rain at some point (a latitude and longitude),

we should be surprised if we are predicting the weather to be dry 1000 ft away.
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CRFs look to smooth out these discrepancies to provide a better regionalized

solution, that (theoretically) creates a better global solution. We could try all possible

combinations of labels, but that takes too much computation time. In an acyclic

graph, there is always an exact solution, but in general, there is not always an exact

global solution.

One additional aspect we need for the construction of CRFs is a “pairwise prob-

ability distribution” that describes how likely it is to have two vertices to have a

particular set of labels. That is, we need some function

Pv,u(l, k) ∈ [0, 1] for v, u ∈ V and l, k ∈ L (5.1)

Often, this is defined in terms of some energy function:

Pv,u(l, k) = exp [−Ev,u(l, k)] /Z (5.2)

This energy function can be seen as a cost of having this set of labels for these

two vertices. One common example is the Potts function (for some A > 0):

Ev,u(l, k) =

 A · (1− δl,k) (v, u) ∈ E

0 otherwise
(5.3)

In other words, if these points are not connected directly in the graph, they have no

consequence on each other. If they are connected, and have the same label, there is

also no cost – the only cost comes from changing labels between neighboring nodes.

This is a somewhat näıve function. In the weather example, “dry” and “moist”

should theoretically have a smaller cost of switching than “dry” and “severe.” But

in practice, the Potts model ends up being a reasonable guess (that can then be

improved). However, it is worth noting that any energy function we define adds

subjectivity back to our model, which provides a potential source of bias and thus a

source of systematic error.
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Figure 5.1: (left) Example of neural network’s cloud reflectivity forecast for Al-
buquerque, New Mexico. (right) Same prediction, with conditional random field
algorithm applied, showing the “smoothing” effect. Training data courtesy of the
National Weather Service.

5.1 Loopy Belief Propagation

One algorithm to use this CRF paradigm is “Loopy” Belief Propagation (so-called,

because it ignores cycles [or “loops”] in the graph, allowing the following iterative

calculation to be “loopy”, violating some of the assumptions made in the construction,

see [11]). In this case, we will have neighboring nodes send “messages” to one another,

giving each other the best impression they have of what labels their neighbors should

take on.

So here, we’ll define Γv = {u ∈ V | (u, v) ∈ E} as the “neighbors” of v ∈ V .

Then, for each s ∈ V , for each t ∈ Γs, and label l ∈ L, we have messages defined as:

m
(i)
s→t(l) = α(s, t, i) ·

∑
k∈L

Ps(k) · Ps,t(k, l) ·
∏

u∈Γs−{t}

m(i−1)
u→s (k)

 (5.4)

where the (i) part of the message is simply to label the messages sent at each iteration

of the procedure. The α(s, t, i) term is to normalize the messages:

∑
l∈L

m
(i)
s→t(l) = 1 (5.5)
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After a sufficient number of iterations I, we can compute the updated “belief” at

each vertex:

Bv(l) = α(v) · Pv(l) ·
∏
u∈Γv

m(I)
u→v(l) (5.6)

where again α(v) is simply for normalization:

∑
l∈L

Bv(l) = 1 (5.7)

The final estimate of Bv(l) replaces our original estimate Pv(l), by taking into

account the values of neighbors in the graph.

5.2 Converting ANN Output to CRF Input

Unless the ANN is trained to predict a probability distribution from the start, the

rainfall prediction it makes at each point must be modified in such a way as to be used

in a CRF model. To create the “labels” in the CRF, one can simply segregate rainfall

estimates into discrete bins (not unlike the process used to create a histogram). In

this project, I employed the following transformation. Given a scaled (normalized

w.r.t. the maximum rainfall observed: 5.16” in an hour) rainfall estimate in the unit

interval, segregate it into one of 9 bins. These bins correspond to the values 0, 0.125,

0.25, ... 0.875, 1.0 (again, normalized rain per hour). If the label li corresponds to the

rainfall estimate i/8, then the corresponding probability distribution for each label

given a rainfall estimate r is:

P (li|r) =


1− 8 ∗ (r − i/8) i/8 < r < (i+ 1)/8

8 ∗ [r − (i− 1)/8] (i− 1)/8 < r < i/8

0 otherwise

(5.8)

So, if r = .3, it is .05 above 0.25, which, out of a bin size of 0.125, means it is 40%

of the way along the number line between 0.25 and 0.375. In that case, we assign a

likelihood of 60% of the rainfall being 0.25 (label l2) and 40% to being label l3. A
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value halfway between these values has an equal probability of taking on either label.

But one very close to one of the label’s rainfall values will most likely be found with

that label.

In this project, neighboring nodes in the grid were defined by a maximum distance

in units of grid cells. A maximum distance of 1 indicates that each cell is only related

to adjacent cells in the 4 cardinal directions. So, a distance of 2 would be all adjacent

cells including diagonals plus the cells a distance of 2 away in the cardinal directions.

5.3 Cost Models

The cost models employed in this project were not dependent on geography; the

distance between two points did not impact the pairwise probability distribution

directly – only by whether the points were close enough to be neighbors (the distance

for this condition is an experimental parameter). Four pairwise cost models were

applied to each ANN prediction as a means of testing multiple models. Two were

Potts models with varying strengths, and two were motivated by a physical cost.

The Potts models were exactly those represented by Equation 5.3, with A = .5, 2.

The physical models added some intuition. Whereas the Potts model only looks for

differences, a more realistic model may incorporate the physical differences between

the quantities being estimated. For example, while we may expect slight variation

in rainfall estimates between neighboring locations, we generally don’t expect severe

weather to occur within visible distance of calm weather. As such, two energy models

were used:

E(1)
v,u(l, k) = ln

[√
1 + |l − k|

]
(5.9)

E(2)
v,u(l, k) = ln

[
(1 + |l − k|)2

]
(5.10)

These correspond to probabilities (before normalization) of
√

1
|l−k|+1

and
(

1
|l−k|+1

)2

.

These provide varying levels of penalty for drastic differences between neighboring
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labels. For non-neighbors, there is no cost, because knowing the value of one has no

impact on the other. So outside any maximum length scale, the energy cost is 0.
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CHAPTER VI

RESULTS

6.1 Testing Methodology

The goal of my project was to reliably create a system that produces better rainfall es-

timates than the Doppler radar alone. To do this, I investigated many configurations

of the ANN and multiple CRF cost functions in an effort to hone in on prediction sys-

tems that could improve flash-flood warning systems. Each trial consisted of training

the ANN on 80% of the 2,189 Doppler radar scans, and computing the error (defined

below) for the training and test sets (only 25% of the training set is considered for this

metric, and is chosen randomly, ensuring that number of scans is not a significant

contributor to any difference in error). Once the ANN prediction has been made,

the prediction is binned and transformed into a discrete probability distribution (see

Section 5.2). Four CRF algorithms are applied in turn, with the same error metrics

calculated for these. The goal then, is to determine which scenario produces the best

results for error across varying number of ANN hidden layers, number of training

iterations, maximum neighbor distance, and percentage of the LCRA sensors used as

input. For example, if one of the Potts models systematically performs better than

the other configurations, it is the best bet for being able to produce a better estimate

than the Doppler radar alone. The best performing model’s error will then be com-

pared against the same metrics run on the 2,189 Doppler radar scans, to determine

if the best system described by the methods outlined above can improve predictions

using post-processing alone.
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6.2 Error Metrics

In determining the “best” system to process the Doppler radar scans into more ac-

curate rainfall predictions, an appropriate error measure must be chosen. The most

straightforward metric of error is the mean of the square of the difference between

observed and expected rainfall at each point in the grid. This is represented by

εmse =
1

N

∑
i

(yobs − yexp)2 (6.1)

Considering that 99% of the full data set of 203,000 files are entirely dry, being

able to predict identically the value 0 at all points would provide a great “best guess.”

By taking only the selection of the ∼1% of the full data set where both radars were

active, and the radars and rain gauges all registered some rain helps ensure the

approximation function f(~x) ≈ ~0 is not among the best models for rainfall. Since

only situations where rain was present were chosen, this is less likely the case, but

there is still something potentially useful to be said for weighting the error by the

strength of the storm. So small differences in estimation when the weather is relatively

dry are less important than small differences when the weather is severe. In this case,

the difference between observed and expected value is multiplied by the square of the

average of the observed and expected value. This is represented by:

εstr =
1

N

∑
i

(yobs − yexp)2 ·
(
yobs + yexp

2

)2

(6.2)

Because even in the subset of the data used, many input and output grid points

predict zero rainfall, strength is likely to have a smaller value on average, compared

to mse. For example, running this metric on the ∼2,000 files, taking LCRA data as

the expected value and the average estimate from the two Doppler radar stations as

the observed value, and finding the mean and standard deviation of each, I arrived

at mse= 0.0026 ± 0.0057 and strength= 0.000054 ± 0.0020. These show how we
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might expect the two error metrics to behave for each configuration of the system,

and provide a baseline for determining whether any configuration can out-perform

the standard Doppler estimate.

6.3 Configurations Tested

For the scope of my thesis, I was able to test 6 main neural network configurations

(with 6 “baseline” neural networks, see below), with five of those augmented by

application of conditional random fields. These were:

Configuration Number of Maximum Distance Iterations of
Number Hidden Layers for Neighbors Training

1 1 1.0 1
2 1 1.0 5
3 5 1.0 5
4 5 3.0 5
5 2 3.0 10
6 5 3.0 10

Table 6.1: Table of configurations used to generate models for estimating rainfall.

Configurations 1–5 were post-processed with the Loopy Belief Propagation algo-

rithm with the following pairwise probability functions (using notation from Chapter

5), which are examples of the Potts energy (Equation 5.3) and custom “strength”

energy (Equation 5.9):
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P1 → Ps,t(k, l) =


1

1+exp(−.5)
k = l

.5
1+exp(−.5)

k 6= l

(6.3)

P2 → Ps,t(k, l) =


1

1+exp(−2)
k = l

2
1+exp(−2)

k 6= l

(6.4)

P3 → Ps,t(k, l) ∝

√
1

|l − k|+ 1
(6.5)

P4 → Ps,t(k, l) ∝
(

1

|l − k|+ 1

)2

(6.6)

As a “baseline” to determine whether the approach outlined above (using the

entire region for input and output of the ANN), I also created a “simple” version

with the same number of hidden layers and training iterations, but only a single cell

for input and output. It is trained on each cell of the grid for each radar scan the

“regional” ANN was trained on. This simple ANN provides a metric to determine

whether adding neighbors is truly the source of any improvement, rather than just

creating a generally better-fitting point-wise nonlinear model. As such, results be-

tween the two types of ANNs for the “same” configuration (number of hidden layers

and number of training iterations) are compared.

6.4 Configuration Results

Figures 6.1–6.8 display the results of the tests. Plotted in each is the mean of the error

metric referenced for the “test” data set (the 20% of the full data set that was not used
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for training), with the standard error of the mean used for error bars (SEM = σ√
n
).

The same error metrics calculated for the average Doppler-radar estimate as the

“observed” value in the calculation can be seen in gray in each figure (constant value

across configurations).

6.4.1 Results for εmse

This error metric is calculated with Equation 6.1.

Figure 6.1: εmse for the region-based ANNs. The same metric calculated between the
average Doppler-radar estimate and the rain gauge grid is in gray. Other colors as
noted in the legend.

Figures 6.1–6.3 indicate several conclusions (insofar as can be noted from these

configurations under this error metric):

1. CRFs do not decrease the overall error (perhaps the resolution was not refined

enough for neighbors to sufficiently contribute to one another).

2. For small numbers of training iterations, the “simple” ANN performs better than

the “regional” counterpart.
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Figure 6.2: εmse for the single-cell ANNs. Colors as above in Figure 6.1.

3. When the regional ANN is allowed to view a multitude of neighboring cells, results

improve dramatically.

The first conclusion is evident from each figure. The post-processed results tend to

have a higher mean error than the un-processed results. Even though in some cases,

the values were within 1-2 standard errors of the mean, there is no indication that

CRFs decrease error. This was unexpected. However, some potential reasons are

that:

a. the CRF pairwise probability functions are of arbitrary forms – perhaps a better

physical model would improve results,

b. the constants used were selected arbitrarily – perhaps they were each either sys-

tematically too low or to high to produce valuable results, and

c. the Loopy BP algorithm was applied for 4 iterations each time – perhaps additional

iterations would improve results.
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Figure 6.3: Combined results for εmse, combining Figure 6.1 and 6.2.

The second conclusion – that small amounts of training led the “simple” ANN to

perform better – may have arisen because the simple network essentially has more

training data. By altering the problem to produce cell-by-cell results (rather than

the entire grid all at once), the simple network trains on 82×98 times more data (in

terms of the problem it is solving), due to the grid being 82×98 cells.

The fact that the regional network saw drastic improvements in εmse when ad-

ditional neighboring cells were considered is extremely encouraging. That indicates

that increasing spatial structure improves rainfall estimates – which was the hope for

this project from the start.

6.4.2 Results for εstr

This error metric is calculated with Equation 6.2.

In this instance, it appears that the addition of the post-processing step with

conditional random field algorithms had no significant impact either way on the error

(Figures 6.4–6.6). Once again, the regional strategy appears to produce a smaller

error than the “single” counterpart, for situations of sufficient complexity for the

regional ANN. However, the SEM for the distributions is large enough to suggest
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Figure 6.4: εstr for the region-based ANNs. The same metric calculated between the
average Doppler-radar estimate and the rain gauge grid is in gray. Other colors as
noted in the legend.

potentially little or no difference between regional and single strategies.

6.4.3 Overall Results

Figures 6.7–6.8 strip out the ANN-only results given in the previous two sections.

This is because in each case the ANN-only results were consistent with or better

than the CRF-augmented results. These two figures indicate that given sufficient

complexity (number of neighbors, number of training iterations, number of hidden

layers), the regional strategy seems to out-perform the single strategy. What is more

is that for both error metrics, both ANN solutions provided a smaller error than the

näıve estimate from averaging the Doppler radar scans. Intuitively, this should be

the case, so long as the networks don’t become over-fitted to the training data (and

then perform poorly on the test data set), but comforting to see it realized in the

experiment.

Thus, based on this selection of ANN configurations, I determined that the regional
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Figure 6.5: εstr for the single-cell ANNs. Colors as above in Figure 6.4.

strategy – leveraging spatial structure in the grid by allowing the ANN to consider

physical neighbors at each layer in the ANN – produces better rainfall estimates.

As such, a system like this could be applied to real-world data processing streams

for precipitation estimation. In doing so, the error would be decreased in estimates,

which in turn provides a better baseline for flash-flood predictions. With better flash-

flood predictions, warning systems can improve, keeping people safer during extreme

weather in Central Texas.
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Figure 6.6: Combined results for εstr, combining Figure 6.4 and 6.5.

Figure 6.7: Results for εmse, showing just the “plain” ANNs (no CRFs).
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Figure 6.8: Results for εstr, showing just the “plain” ANNs (no CRFs).

33



CHAPTER VII

POTENTIAL EXTENSIONS OF WORK

Some ways that this project could be extended to further investigate the claims made

and to produce even better models for rainfall estimation are:

• Increasing the number of hidden layers, training iterations and maximum dis-

tance for neighbors for the regional network to determine where improvements

to error become stagnant.

• Identify and test additional pairwise probability models for the CRF algorithm.

• Apply the CRF algorithm for more than 4 iterations to see if increased infer-

encing produces smaller errors.

• Compare results against the National Weather Service’s Quantitative Precipita-

tion Estimation system, which incorporates Doppler, satellite, rain gauge, and

other data for its estimates.

• Use a network of a size between the simple and regional models – for example,

a network just large enough to cover neighboring nodes – in order to see if

the ANN can be used as a sort of regional smoothing algorithm that could be

applied more readily at a national scale.
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APPENDIX A

BACKPROPAGATION

One algorithm for learning the weights Wi,j in the neural network is backpropagation.

The main method of updating values is just gradient descent, but because of the com-

plicated dependence on each node, the algorithm is provided. I’ll follow conventions

from [12]. Assume we have input χ ∈ Rn and expected (training) output Y ∈ Rm,

with total number of nodes N . So, as before, for i ≤ n, χi = xi and for i ≥ N −m,

Ŷi+m−N = xi (the observed output vector Ŷ is represented by the last nodes in the

network).

Given a set of training data, the algorithm then iteratively calculates the coeffi-

cients in the network, minimizing the square of the error E =
∑m

i=1(Yi − Ŷi)2, where

Ŷ is the current output from the neural network for input χ. We’ll also use the notion

of an “ordered derivative” with zi defined as in Equation 3.1:

D(E, zi) =
∂E

∂zi
+
∑
j>i

∂E

∂zj
· ∂zj
∂zi

(A.1)

which encapsulates the notion of both the explicit and implicit dependence of the

error on a particular variable.

To summarize Werbos’ analysis, we obtain the following:

D(E, Ŷi) =

 Ŷi − Yi 0 < i ≤ n

0 otherwise
(A.2)

D(E,Wi,j) = D(E, zi) ·D(E,Xj) (A.3)

D(E, zi) =
ds(z)

dz

∣∣∣∣
zi

·D(E,Xi), i = N,N − 1, ..., n+ 1 (A.4)

D(E,Xi) = D(E, Ŷi−(N−n)) +
N∑

j=i+1

Wj,i ·D(E, zj), i = N,N − 1, ...n+ 1 (A.5)
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From this, we are able to calculate these many quantities in order to update the

coefficients:

W ′
i,j = Wi,j − r ·D(E,Wi,j) (A.6)

where r is “some small constant” for iterating this procedure (for example, r = 0.3).

Generally, if 0 < r < 1, this is sufficient for the algorithm to converge to a locally

optimal solution.

We then redefine Wi,j = W ′
i,j, and continue this process for another pair of in-

put and expected output vectors. This is done until some notion of convergence is

achieved. In my implementation, this is a fixed number of iterations through the

entire training set.
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APPENDIX B

BENJAMINI-HOCHBERG PROCEDURE

The Benjamini-Hochberg Procedure [10] is a method to control the false discovery

rate in multiple hypothesis testing. If data are taken from a simulation assuming

the null hypothesis, we should expect the p-values of many such hypotheses to be

distributed uniformly on U(0, 1). For example, if all of the hypotheses involve a

parameter estimated from a normal distribution N(µ, σ), we should expect roughly

5% of the z-scores to be greater in absolute value than 2. Rather than assuming

all such z-scores are significant, we can instead consider a method to identify which

are truly significant, rather just due to random variation. This minimizes the false

discovery rate (number of true hypotheses marked as rejected over total number of

hypotheses rejected).

The Benjamini-Hochberg procedure does so by taking the hypotheses Hi and

sorting them by p-value, creating a new list H
(s)
i with associated p-values p

(s)
i where

for i < j, p
(s)
i ≤ p

(s)
j . The idea here is that these p-values should follow a uniform

distribution, so their CDF should follow the line p̂
(s)
i = i

N
. Now, instead of comparing

the p-values naively to α as pi
?
< α, we can instead use the estimated p-values as a

basis for comparison.

In particular, for a given value q∗ (which can be set to α), let k be the maximum

value for which p
(s)
k ≤

k·q∗
N

. In other words, find the largest sorted p-value that is

significantly less than the estimated value (by a factor of q∗). This indicates the

p-values that are abnormally small. For all i ≤ k, we reject H
(s)
i . So, the hypotheses

rejected under this procedure obey a much harsher constraint for rejection, which

helps control the FDR.
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APPENDIX C

CODE DESCRIPTION

All code for this project is available on GitHub at github.com/eaott/weather-prediction.

It is largely written in Java, with a few Python and Mathematica scripts used for data

processing and analysis. The relevant package structure is as follows:

weather.data Contains some files for processing intermediate data, and constants

associated with the data set (for example, the boundaries of the region under

investigation).

weather.network Code to produce an artificial neural network (ANN) as described

in Chapter 3, specifically SimpleNetwork.java. NetworkTest.java contains

the test code described in Chapter 4.

weather.process Major utility functions for relevant processing when running ex-

periments. In particular, this includes code for producing Voronoi diagrams (see

Section 2.4), and for performing Loopy Belief Propagation on neural network

results (see Section 5.1).

weather.scripts Scripts contains the runnable sections of code to create experi-

ments. This includes processing of the rain gauge data and the main experi-

ments used to create the results for this project.

weather.util Utility functions for serialization, error calculation, and more, along

with interfaces for some customizable aspects of the ANN system.
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